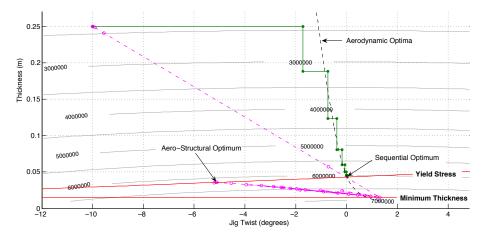
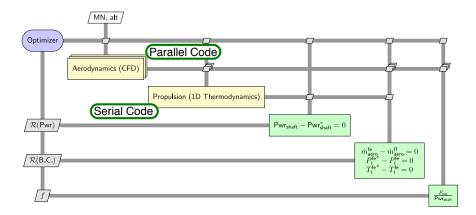
Gradient Based Optimization of Coupled Multi-fidelity Models with OpenMDAO


Justin Gray

September 13th, 2017

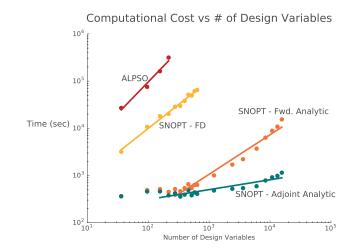
Using uncoupled models (sequential optimization) can prevent you from finding peak performance


[Chittick and Martins, Struct. Multidiscip. O., 2008]

Highly synergistic designs require considering of coupling early in the design cycle

- Aerodynamic couplings often require detailed flow-field information — CFD
- Structural couplings can require detailed stress information FEM
- It is too expensive to analyze everything with high fidelity, so we build multi-fidelity models

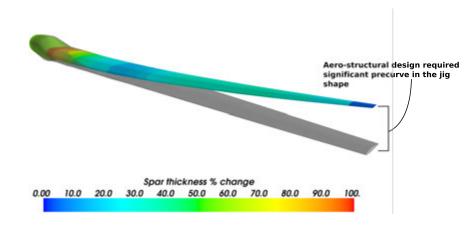
Multi-fidelity: a single system model that includes analyses at different levels of fidelity


"Fidelity" can mean a range of things: compute cost, number of inputs, mesh size, parallel vs serial ...

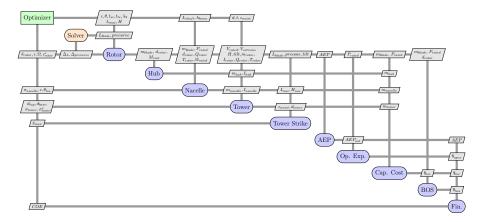
When we use CFD or FEA, the # of design variables and the compute cost grows considerably

- Gradient based optimization effectively navigates large design spaces
- Analytic derivatives are the most efficient way to compute gradients

Analytic Derivatives lower the compute cost of optimizations

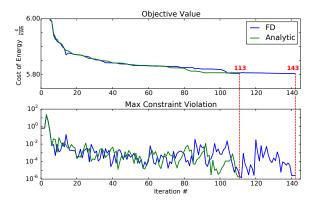

We want to design complex systems with coupled multi-fidelity models, so we use gradient based optimization with analytic derivatives

(Unfortunately this is easier said than done)


OpenMDAO can efficiently solve for analytic multi-disciplinary derivatives in parallel on HPC systems

- Runs in parallel with MPI/PETSc on HPC resources
- Uses a distributed memory design to work with sparse distributed data
- Supports matrix-free linear solvers for converging the coupled multidisciplinary derivatives

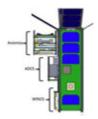
Aerostructural wind turbine blade design with 10 engineering disciplines



10 engineering disciplines with multi-fidelity aerostructural coupling in the rotor design

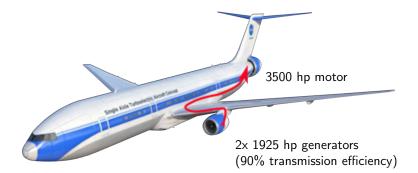

Optimization was 5x faster with analytic derivatives

	Finite-Difference	Analytic
Objective (COE in ¢/kWh)	5.8045	5.8042
Max Constraint Violation	2.62×10^{-6}	1.81×10^{-6}
# Major Iterations	143	113
Time Per Major Iteration (minutes)	2.27	0.59
Total Run Time (hours)	5.43	1.11

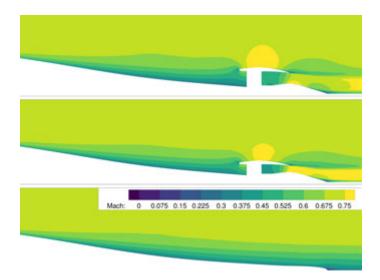


An optimal control problem for a satellite design with 25000 variables was solved in 8 hours on 6 CPUs

Ground station located at Mcmurdo Base, Antarctica



Satellite was launched into a polar orbit



Turboelectric aircraft concept used boundary layer ingestion (BLI) get 12% mission fuel burn reduction

Turboelectric propulsion system has an electric BLI propulsor powered by generators mounted on the under-wing turbofans

A fully coupled model is crucial for capturing the correct system performance

The optimized configuration produced a significantly different nacelle geometry than the baseline

Optimized design

Initial design

- We increasingly need to built coupled multi-fidelity models to accurately model coupled systems
- Gradient based optimization with analytic derivatives provides a tool to navigate the resulting larger design spaces, but posses implementation challenges
- OpenMDAO simplifies the implementation and lets you solve big multi-fidelity problems efficiently