

Closed Loop Wind Farm Control

4th Workshop on Systems Engineering for Wind Energy 13th – 15th September, 2017 Roskilde (Denmark)

Mikel Iribas CENER

CL-Windcon CLOSED LOOP WIND FARM CONTROL

- H2020 European funded project
- Coordinator: National Renewable Energy Centre of Spain (CENER)
- 14 partners from 6 European countries (Universities, technological centers, industry)
- Duration: November 2016 October 2019 (36 months)
- Total cost: 4.931.422,50 EUR

<u>Aerodynamic wind farm control</u>: CL-Windcon will address **multi-fidelity dynamic modelling** and **open and closed-loop advanced control algorithms at a farm level** by treating the entire wind farm as a comprehensive real-time optimization problem.

CL-Windcon SYSTEMS ENGINEERING RATIONALE

Model

validation &

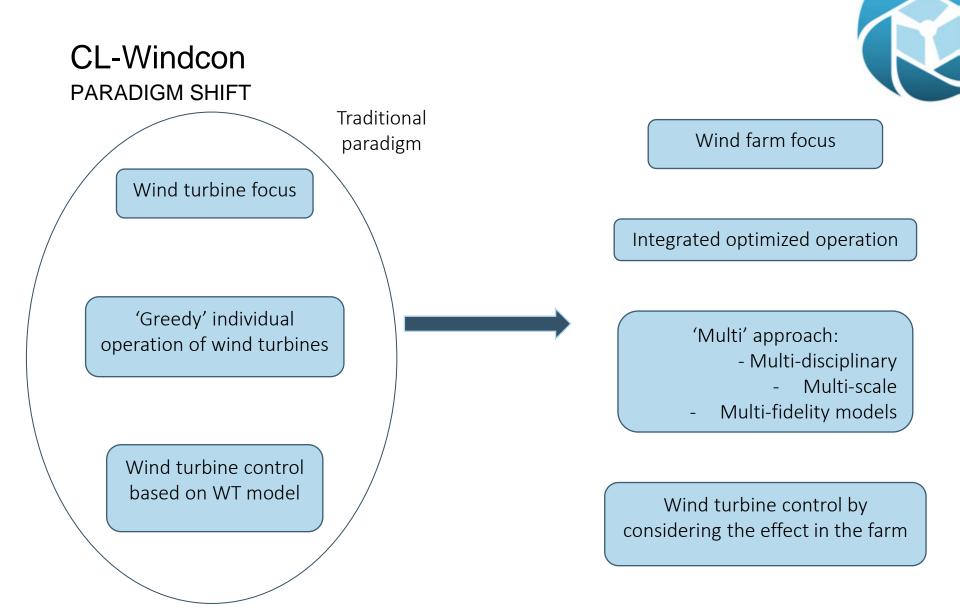
control

verification

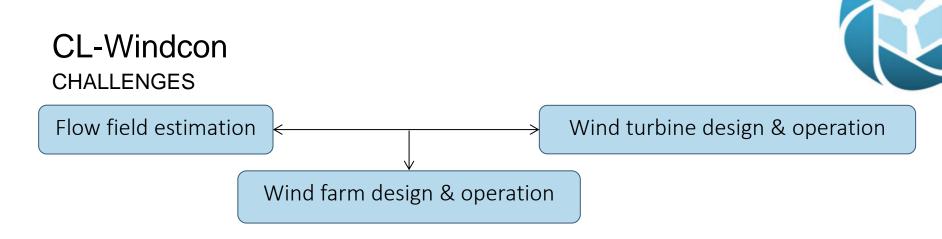
Multi-fidelity wind farm models

- Better understanding of wind farm flow dynamics and wake interactions
- Advanced integrated simulation environments

Minimize LCOE


balance between annual energy production, lifetime and O&M cost

Wind farm & wind turbine integrated control solutions


- SOWFA simulations
- Wind tunnel tests
- Wind farm tests

The entire wind plant as a control optimization problem

- Integration of different temporal and spatial scales and model fidelities
- Validation of CFD models against:
 - Wind tunnel tests
 - Wind field data
- Comparison among different multi-fidelity models: from CFD to control-oriented engineering models
- Multiple criteria optimization: production maximization & minimal loading by acting on aerodynamic interaction
- Unusual points of operation for wind turbines (e.g. yaw redirection)
- Control verification of different strategies: yaw redirection, derating

CL-Windcon PLANNING

CL-Windcon	2016 2017		2018	2019	
	Novenber December January February	March April May June June July August September October Novenber	January February March April May June June June June June September October Novenber	January February March April May June June July September October Novenber	
WP1	Wind farm control-oriented model development				
WP2		Wind Farm Flow technologies and algorithms			
WP3		Demostration and Validation of Prototypes			
WP4		Feasibility			
WP5	IPR, Explotation, Dissemination and Communication of results				
WP6	Management				
WP7	Ethics requirements				

CL-Windcon CURRENT STATUS

- Tasks already performed:
 - Definition of reference wind farms, simulation scenarios and use cases
 - Definition of the preliminary test matrix for wind tunnel experiments (wake characterization and tool validation). First tunnel tests performed.
 - Common pre- and post-processor for wind farm simulations
- On-going work:
 - Evolution of a set of multi-fidelity wind farm modeling tools, setting an adequate comparison framework
 - Creation of SOWFA reference simulation environment
 - Optimal wind turbine control strategies aimed at wind farm control
 - Wind farm control strategies (axial induction, wake redirection)
 - Detailed planning of full scale testing

THANK YOU!

miribas@cener.com

www.clwindcon.eu

