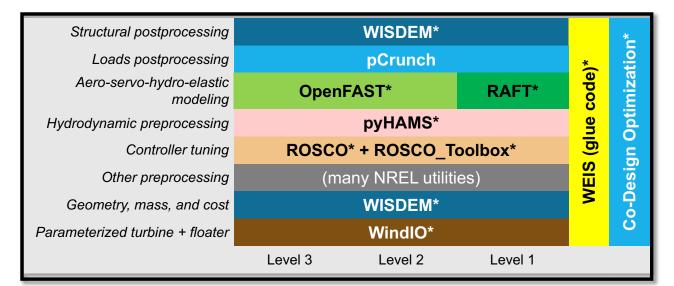

Agenda

- What are WISDEM & WEIS
- How to Compile and Run WISDEM & WEIS
- WISDEM & WEIS Input Files
- Example in WISDEM
- Example in WEIS
- Contacts, Publications, and Q&A

WISDEM

WISDEM is a conceptual design tool for wind turbines


- Fully open-source
- Actively maintained and improved for more than 10 years
- It addresses all major wind turbine components
- Supports both land-based and offshore designs
- Examples and documentation available
- Used by industry and academia

WEIS

WEIS is the evolution of WISDEM and was presented yesterday by Dan Zalkind

- From steady-state models to full aeroservoelastic models
- Fully open-source, maintained, and improved
- Focus on floating designs

How to Compile and Run WISDEM & WEIS

Follow the instructions provided at

- https://github.com/WISDEM/WISDEM
- https://github.com/WISDEM/WEIS

Note: WEIS is supported on Linux and Mac, not on Windows Use the Ubuntu subsystem or a Linux virtual machine instead

The two frameworks come with examples

WISDEM and WEIS Input Files

Both tools use the same three input files, all in yaml format and equipped with schemas:

- 1. Wind turbine definition
- 2. Modeling options
- 3. Analysis options

Wind Turbine Definition

A description of the wind turbine system that respects the ontology defined by IEA Wind Task 37 (https://github.com/IEAWindTask37/windIO)

- Supports land-based, fixed-bottom, and floating
- Documentation is available at https://windio.readthedocs.io/en/latest/
- You can visualize yaml schemas such as this
 one first converting them to json schemas with
 this online tool and then using this online
 visualizer

```
name: IEA 15MW Offshore Reference Turbing
                            turbine class: I
                            turbulence_class: B
                            drivetrain: direct drive
                            rotor orientation: Upwind
                            number of blades: 3
                           hub height: 150.
                            rotor_diameter: 242.23775645
                            rated power: 15.e+6
                            lifetime: 25.0
                       components:
                            blade: ...
                444 >
                            hub: --
                            tower: ...
                            floating platform: --
               809 >
               866 > airfoils: --
               1017 > materials: ...
               1237 > control: --
               1263 > environment: --
               1276 > bos: ...
               1293 > costs: --
               1321
                                          blade{}*
                                              hub{}*
                                             nacelle{ }*
                                             tower{ }*
                                             monopile{}
                        name:string*
                                             foundation()*
                        components{
                                             floating_platform()
                                                                   members[]:array*
                        airfoils[]:array
                                                                   rigid_bodies[]:array
                        materials[1:array*
                        assembly{\}*
O IEA wind turbine ontology()
                                                                   nodes[]:array*
                      actuators()*
                                                                   lines[]:array*
                        control( )*
                                             mooring()
                                                                   line_types[]:array*
                        environment{}*
                                                                   anchor_types[]:array*
                        bos{}
                                                                            NREL
                        costs{}*
```

Modeling Options

A .yaml file listing all the modeling options, for example specifying which sub-models are active or inactive and their settings

- Same file for WISDEM and WEIS, the latter is simply longer
- The <u>schema</u> contains helpful documentation

```
1 > General: ...
       WISDEM:
           RotorSE: --
           DriveSE: -
           TowerSE: --
           FixedBottomSE: --
       Level3:
           flag: True
           simulation: --
           linearization: --
           ElastoDynBlade: --
           ServoDyn: --
           HydroDyn: -
89
    > ROSCO: ···
       DLC_driver:
           DLCs:
                - DLC: "1.1" --
108 >
               - DLC: "1.3" --
               - DLC: "1.4"
               - DLC: "6.1"
```

Analysis Options

A .yaml file listing the optimization options, such as design variables, bounds, constraints, merit figure, and recorder options

```
general:
          folder_output: outputs_aerostruct
          fname output: blade out
      design_variables:
          rotor_diameter:
              flag: True
              minimum: 190
              maximum: 240
          blade:
              aero shape: --
      merit_figure: LCOE
60
61
          blade:
              strains_spar_cap_ss:--
              strains_spar_cap_ps:--
              strains_te_ss:-
              strains_te_ps:-
              tip_deflection: --
     driver:
100 > recorder: ...
```

Run WISDEM

Run a rotor / tower / monopile optimization scaling the IEA15 to 20MW

WISDEM Example #18

An academic, but frequent, exercise:

- Start from the IEA15MW and scale the design to 20MW, sticking to 325 W m⁻²
- Optimize
 - blade chord, twist, spar caps thickness
 - tower and monopile diameter and wall thickness
- Constraints on blade aero, structure, tower, and monopile
- Minimize LCOE

What could happen next

- 1. Run a design optimization of the drivetrain system
- 2. Tune a controller and run design load cases
- 3. Use loads to feed higher fidelity design model for each component
- 4. Iterate

WEIS comes into the game

Run WEIS

Run DLCs with ROSCO and OpenFAST

WEIS Example

WEIS is used in many ways

- Run design load cases
- Run aeroelastic stability analysis
- Run design of experiments
- Run design optimizations

Here we showcase option #1 (DLC 1.1 in this example, more DLCs are available) from the WISDEM design output at 20MW

Some Suggestions from the NREL Team for the WISDEM/WEIS Newcomers

- 1. Get familiar with the OpenMDAO docs and tutorials
- 2. Try running the <u>WISDEM examples</u>
- 3. When defining your own problem, go simple and focus on one/two components at the time
- 4. Add design variables and constraints incrementally
- 5. Focus on min mass / max AEP problems before jumping to min LCOE
- 6. Do not debug with MPI turned on
- 7. Post questions on <u>GitHub issues</u>
- 8. Always use your design expertise!

Contacts, Publications, and Q&A

Contacts

- garrett.barter@nrel.gov
- pietro.bortolotti@nrel.gov
- daniel.zalkind@nrel.gov

Publications:

- WISDEM https://wisdem.readthedocs.io/en/develop/publications.html
- WEIS https://github.com/WISDEM/WEIS/blob/develop/docs/publications.rst