

Thermoplastic Wind Turbine Blades and Recyclable-by-Design Materials

Robynne Murray August 31, 2022 Team: Ryan Beach, David Barnes, Nic Rorrer, Erik Rognerud, David Snowberg, Derek Berry, and many more

Introduction

Problem: Large composite structures like wind turbine blades have traditionally been made of materials that are costly and challenging to recycle

Impact for wind turbines: Could be over 50 million metric tons of waste by 2050 from blades

Today's talk:

Source: Elsevier /University of Cambridge

Thermoplastic materials

- NREL has been researching thermoplastic composites (using Elium resin) as well as novel recyclable-by-design materials to address this challenge
- Thermoplastic composites gaining interest in wind industry

Reduce cycle time	Ca
and energy	
consumption	• Elin in

Can be thermally joined

 Eliminates adhesive bonds, increasing strength and reliability

Can be reformed

• Enables easier repair and maintenance

Can be recycled at the end of their life span On-site manufacturing becomes a viable option

Coupon-scale validation

- Thermoplastic composites compared to thermoset composite materials at a coupon scale
- Thermoplastics are within 5% strength and modulus compared to epoxy

• COMPOSITES

13 m blade manufacturing and validation

13-m Epoxy blade

- DOE WETO Project: National Rotor Testbed (NRT)
 - 13-m blades made using traditional epoxy resin and fiberglass to go on SNL SWiFT turbine
 - ORNL 3D printed molds
 - TPI Composites fabricated 4 blades
 - 3 to fly at SWiFT site
 - 1 to NREL for structural validation

13-m epoxy NRT blade

Maximum Flap Loading

Maximum Edge Loading

Photo Credit: NREL

13-m Thermoplastic blade

- Identical thermoplastic blade manufactured with Elium resin in the CoMET at NREL using the same tooling
 - Different fiberglass, adjusted layup using NuMAD to match stiffness and thickness to 5%
 - Different adhesive (PMMA adhesive chosen based on lap shear testing)

Static load comparison

- Static strength testing
 - o Flatwise displacement 3-7% higher
 - o Edgewise displacement 10-15% higher
 - o Strains within 10%
 - o Differences attributed to differences in adhesive and fiberglass (less stiff adhesive)

	Blade Station Deflection	Thermoset Epoxy (Sandia NRT Blade)	Thermoplastic Elium (IACMI 13-m TP Blade)	Comparison (Thermoset vs. Thermoplastic)
Max Flatwise	7-m (54% span)	251.1 mm	265.2 mm	105.6%
Static	11.25-m (87% span)	865.4 mm	893.1 mm	103.2%
Min Flatwise	7-m (54% span)	175.1 mm	187.9 mm	107.3%
Static	11.25-m (87% span)	537.7 mm	563.9 mm	104.9%
Max Edgewise	7-m (54% span)	102.7 mm	118.8 mm	115.7%
Static	11.25-m (87% span)	298.8 mm	340.7 mm	114.0%
Max Edgewise	7-m (54% span)	114.9 mm	128.2 mm	111.6%
Static	11.25-m (87% span)	322.8 mm	356.6 mm	110.5%

13-m TP Blade static load testing at 100% design load (PhotoCredit: NREL)

Fatigue load comparison

- Fatigue method: Damage Equivalent Load
 - Accelerated loading 1e6 (1 million) cycles using resonant fatigue testing

Fatigue load comparison

- Dynamic mechanical analysis (DMA) to compare damping characteristics of epoxy and thermoplastic blades
- First 3 natural frequencies within 3% of NRT
- Structural damping 5-7x higher =reduced loads in field operation
- How does structural data impact design?
- Are there other tests we should be doing to better inform blade and turbine design?

Techno-Economic Analysis

- Breakdown of blade manufacturing cost for a 61.5-m thermoplastic blade
 - Thermoplastic blade costs 4.7% less than an equivalent epoxy blade
 - Mainly driven by reduced tooling costs
 - Material costs more per kg, with economies of scale, the cost can go down further

Conclusion

- Thermoplastics can be a drop in replacement for non-recyclable epoxy resins
- Still a lot of research to do to understand the full value proposition
 - Thermal welding
 - Thermoforming
 - Repairs
- Need to understand science and cost of recycling these blades have not recycled the 13m thermoplastic blade

Recyclable-by-design materials at NREL

This document contains Alliance confidential commercial and/or business-sensitive information throughout, which shall not be disclosed other than to Alliance/MRIGlobal/ Battelle personnel with a need to know or to DOE personnel in accordance with the terms of Prime Contract No. DE-AC36-08GO28308.

Recyclable epoxy

- Resins that can undergo exchange reactions -> composite materials can be recycled and thermomechanical properties modulated
- NREL developed a novel **bio-derivable** epoxyanhydride resin with **reversible crosslinks** to enable recycling ("RBD resin")
- ROI 20-59 and patent application submitted
- Techno-economic and supply chain analysis of feedstocks shows lower GHG and potentially less expensive than traditional epoxy materials
- NREL working on characterization and validation of this new material for wind turbine blades

Wind materials testing

- Manufacturability: Infusion of RBD resin into glass and carbon fiber in the CoMET
 - Cure cycle same as traditional epoxy material
 - Similar viscosity to traditional epoxy
 - Promising! .. balance between strength and flexibility
 - SEM imaging shows possible sizing incompatibilities

- Currently depolymerizing panels (at room temperature and 100g+ scale)
- TGA results indicate no detrimental effect to the CF sizing post depolymerization
- Residual resin MAY further aid re-use due to exchange reactions

Thank you!

Robynne Murray robynne.murray@nrel.gov

Appendix slides

