

AI/ML as a gateway to design with HFM

Ryan King, PhD

Senior Scientist, Computational Science Center NREL 6th Wind Energy Systems Engineering Workshop August 31st, 2022

AI/ML Achieving Wind Energy Goals

Biden administration goal: 100% carbon-free electricity by 2035

Artificial intelligence and machine learning (AI/ML) provide new pathways to improve planning, design, and controls that can help achieve 2035 goals.

Veers et al, Grand challenges in the science of wind energy. Science, 2019

A New AI/ML Modeling Paradigm

- High fidelity modeling (HFM) codes are often too expensive for design, optimization, or controls
- Existing reduced order models are inaccurate for nonlinear dynamics arising in large and flexible turbines
 Expensive CFD design loop
- AI/ML models trained on HFM data encode HFM accuracy at low cost

Accelerated ML design loop NREL | 3

HFM data used to train ML model

AI/ML Themes in Computational Workflows

3.4

Categories of Scientific AI/ML Models

Unsupervised Learning

- Finds structure in untagged data
- Data compression, anomaly detection, pattern recognition
- Sampling and generative models

Insight

Supervised Learning

- Learns input/output maps
- Can encode problem physics
- Performance (usually) scales with amount of training data

Reinforcement Learning

- Sequential decision making to maximize a reward
- Exploration/exploitation
- Model-based or model-free

Action

AI/ML in a Multifidelity Context

Successful AI/ML Applications Across Wind Lifecycle

Example #1 Inverse Blade Design

Collaborators: Ganesh Vijayakumar, Andrew Glaws, Zach Grey, Olga Doronina, Bum Seok Lee, James Baeder

Wind Turbine Blade Design

- Wind turbines are becoming taller and larger.
- Linearized blade element momentum (BEM) techniques fail to capture 3D nonlinear aerodynamics.
- Design optimization with 3D unsteady CFD is expensive, even with adjoint gradient capability.
- Can we solve this as an inverse problem with AI/ML?

Inverse Design Problem

Identify candidate airfoils with \pm 20% of a baseline airfoil which satisfy the following performance criteria

Published as a conference paper at ICLR 2019

ANALYZING INVERSE PROBLEMS WITH INVERTIBLE NEURAL NETWORKS

Lynton Ardizzone¹, Jakob Kruse¹, Sebastian Wirkert², Daniel Rahner³, Eric W. Pellegrini³, Ralf S. Klessen³, Lena Maier-Hein², Carsten Rother¹, Ullrich Köthe¹ ¹Visual Learning Lab Heidelberg, ²German Cancer Research Center (DKFZ), ³Zentrum für Astronomie der Universität Heidelberg (ZAH) ¹lynton.ardizzone@iwr.uni-heidelberg.de, ²s.wirkert@dkfz-heidelberg.de, ³daniel.rahner@uni-heidelberg.de

Abstract

For many applications, in particular in natural science, the task is to determine hidden system parameters from a set of measurements. Often, the forward process from parameter- to measurement-space is well-defined, whereas the inverse problem is ambiguous: multiple parameter sets can

Strategy: Train an AI/ML surrogate model for HFM CFD that is **invertible by construction**.

This allows for rapid generation of new shapes for different performance criteria.

Invertible Neural Network Design

The INN learns a bijection

Activations functions in each layer are constructed with closed form inverses

Supervised: $[\mathbf{x}, \mathbf{y}] \rightarrow \mathbf{f}$

Supervised: $[\mathbf{x}, \mathbf{y}] \rightarrow \mathbf{y}$

Training Data

- Airfoil shapes are defined using the Class-Shape Transformation (CST)
 - 20 parameters per airfoil from a Bernstein polynomial expansion
- High fidelity forward model: Hamiltonian CFD solver (HAM2D) from UMD

$$\mathbf{x} = \begin{bmatrix} \mathbf{CST}_{\text{upper}} \\ \mathbf{CST}_{\text{lower}} \\ \alpha \end{bmatrix}, \quad \mathbf{y} = [\text{Re}], \quad \mathbf{f} = \begin{bmatrix} C_d \\ C_l/C_d \\ \alpha_{\text{stall}} - \alpha \\ (t/c)_{\text{max}} \end{bmatrix}, \quad \text{and} \quad \mathbf{z} = [\text{latent variables}]$$

- Design space defined by ±20% perturbation about a baseline airfoil (DU25)
 Re ∈ {3×10⁶, 6×10⁶, 9×10⁶, 12×10⁶}, α ∈ [-4°, 20°]
- 801 perturbed shapes w/ sweeps across Re and $\alpha \rightarrow$ 80,100 total CFD runs

2D Airfoil Results

100 unique shapes all satisfying criteria

A. Glaws, R. King, G. Vijayakumar, S. Ananthan, *Invertible Neural Networks for Airfoil Design*. AIAA Journal, 2022.

Airfoil Parameterization

- CST parameterization flaws: disjoint design space and unphysical perturbations
- Parameterization with Grassmann manifolds allows shapes to be sampled and smoothly deformed independent of affine transformations or rotations.
- Principal geodesic analysis (PGA) basis r=4 instead of 20 CST parameters

Airfoil Parameterization

physical

grassmann

• 3D blades now represented as curves on a Grassmann manifold

Outer Blade Section Design

- Designing outboard 60-95% of blade representative of later stages of design
- Goal is to tradeoff some power to increase tip clearance and/or mitigate loads, while also demonstrating INN with full 3D blade representation.
- Control variables: twist and chord profiles, plus outer section airfoil shape, while minimizing thrust and maintaining power.

Outer Blade Section Design Results

 All INN-generated shapes and profiles meet design criteria and reduce loads as confirmed by CFD validation of INN output

INN Outcomes

- Dramatic acceleration of airfoil design process, 3D blade design underway
- INN tool integrated into WISDEM suite

 <u>https://github.com/NREL/INN-interface</u>
- New conception of 2D and 3D shapes with principal geodesics in Grassmann space
- Differentiability of INN enables gradient-based shape sensitivity analysis that can inform Least flexibility manufacturing tolerances

Example: Airfoil design evaluation

- 20 CFD evaluations
- 2 hours each
- 144000 CPU s
- INN-Design cost: < 1s

87% dimension reduction of 3D blade parameterization

Example #2 Super Resolution

Collaborators: Andrew Glaws, Brandon Benton, Grant Buster, Malik Hassanaly, Julie Lundquist, Dave Rosencrans, Karen Stengel, and Dylan Hettinger

Climate Downscaling Challenge

How will future climate scenarios impact the development and operation of renewable energy?

- Global climate models (GCM) use a resolution of ~1 deg. (~100 km).
- Wind and solar resource assessments require resolution of ~2 km.
- Can AI/ML enhance the fidelity of this data?

Super resolution of climate data

- Super resolution has been effective on natural images, can we use it to enhance scientific data?
- Approach: convolutional neural networks (CNN)
 + generative adversarial networks (GANs)

$$\min_{G} \max_{D} \mathbb{E} \left[\log \left(D(\mathbf{y}) \right) \right] + \mathbb{E} \left[\log \left(1 - D(G(\mathbf{x})) \right) \right]$$

Ledig et al. 2017

https://www.gfdl.noaa.gov/climate-model-downscaling/

Using SR to Downscale GCM Data

HFM Training data: NREL's Wind Integration National Database Toolkit (WTK) based on WRF

Application deployment: NCAR's Community Climate System Model (CCSM) used in CMIP5 IPCC studies

Process

- 1. Train super resolution networks on coarsened WTK/NSRDB data.
- 2. Apply the trained CNNs to super resolve CCSM wind/solar data.

Model	CCSM4	NSRDB	WIND Toolkit
Institute	NCAR	NREL	NREL
Data	wind & solar	solar	wind
Spatial Res.	0.9° lat $ imes 1.25^\circ$ lon	0.04°	2km
Years	2020-2039	2007-2013	2007-2013
Temporal Res.	daily average	hourly	4 hourly

Testing the Trained Super Resolution Model

• Coarse 100km resolution wind data \rightarrow WIND Toolkit 2 km resolution

Quantifying Improvements in Generated Fields

- Adversarial training produces quantifiable improvements in physical quality
 - Correct turbulent statistics
 - DNI & DHI semivariogram improved
- Perception/distortion tradeoff
 - Adversarial training increases MSE

$$\mathcal{L}_G(\mathbf{x}, \mathbf{y}) = \mathcal{L}_{content}(\mathbf{x}, \mathbf{y}) + \alpha \mathcal{L}_{adversarial}(\mathbf{x}, \mathbf{y})$$

Quantity	Bicubic Interpolation	Pretraining	Adversarial
u	0.205	0.135	0.157
v	0.265	0.168	0.193
Quantity	Bicubic Interpolation	Pretraining	Adversarial
DNI	0.155	0.078	0.086

Normalized Variance 10^{-1} Mean Squared Error on Test Set 10^{-2} 10 Interpolate SR

K.Stengel, A. Glaws, D. Hettinger, and R. King. PNAS, 2020

Evaluating on Global Data

Spatiotemporal Super Resolution

Goal: extend methods for enhancing spatial resolution of climate data to temporal domain

Daily -> hourly or hourly -> 5 minute

Challenges:

- Significant increase in enhanced details $10 \times 10 \times 24 \text{ SR} \longrightarrow \frac{2,400 \text{ SR pixels}}{1 \text{ LR pixel}}$
- Memory constraints require smaller batch sizes
- Single spatio-temporal discriminator

Spatiotemporal SRGANS

GANs learns advection which leads to more accurate wind ramp rates

Simultaneous 24x temporal and 10x spatial SR Interp HR resolution enhancement 10 **Global Super-Resolution** 60 ° N -1020 40 80 100 120 40 ° N 60 0 20 ° N -5θ > _10 Day: 0, Hour: 0 -15 -20 SR - Interpolation SR - GANs LR HR 20 40 - 15 60 80 100 120 15 15 15 10 10 10 10 25 Magnitude 12 12 5 0 0 velocity 2 -5 -5 -5 -5 -10-10-10-10Λ 20 40 60 80 100 120

Time (Hours)

Spatiotemporal SRGANS

- Latest extensions include multiple hub heights and multiple atmospheric variables, plus inclusion of terrain.
- Example: 4x temporal and 3x spatial enhancement of 1500km x 1500km region replacing 1 layer of WRF nested grid

True Low Res

SRGAN Output

True High Res

Super Resolution Outcomes

- Open source spatio-temporal super resolution tool: <u>https://github.com/NREL/sup3r</u>
- Applicable to arbitrary sized input domains (local/regional/global), and up to 50x spatial and/or 24x temporal enhancement
- Can enhance multiple atmospheric variables simultaneously and at different heights for operational forecasting or long term planning applications
- Super resolution capability is being used in many other ongoing climate scenario and forecasting studies at NREL, e.g. hurricanes, flood risk, sea level rise, land use changes, etc.

Thanks!

ryan.king@nrel.gov