
Recent developments in large-scale multidisciplinary design optimization

(application to urban air mobility vehicle design)

John Hwang

Assistant Professor

6th Wind energy systems engineering workshop

Boulder, CO

August 31, 2022

What is urban air mobility?

2

Advanced air mobility

Urban air mobility Air travel for
underserved

marketsAir travel in
urban areas

Package
delivery

Enabled by advances in electric propulsion,

batteries, autonomy, advanced manufacturing

 [NASA]

150 mph cruise

Up to 5 people

100 km range

4000~7000 lb

Electric vertical takeoff and landing (eVTOL) aircraft

3

There are many open questions in vehicle design

4

[Vertical
Flight Society]

Archer
Aviation

Overair

Bell

Jaunt Air
Mobility

Challenges:

‣ Diverse set of possible
design configurations

‣ Large uncertainties on
technological
assumptions

‣ Operating parameters
are also changing

‣ Traditional design
methods that rely on
existing designs are not
applicable to eVTOL

Need: highly automated, physics-based design tools based on full-configuration simulation

We can address this gap using
large-scale multidisciplinary design optimization (MDO)

5

10s or more
design variables

Use computational models involving
multiple disciplines

Apply numerical
optimization algorithms

Performance
model

Optimization
algorithm

Search over
continuous

design variables

Return the
objective and

constraint values

Parameter
sweep

Weight

Range

Tilt-rotor Multi-rotor

Trade study using MDO
Sweep over

discrete parameters
and requirements

Key outputs
(e.g., weight)

6

Review of sensitivity analysis methods

Novel methodology for system modeling

Demonstration on UAM air taxi design problem

Outline

In engineering design, optimization problems are solved using
either gradient-based or gradient-free optimizers

7

Gradient-based optimizer

(SNOPT)

41 iterations

Gradient-free optimizer

(ALPSO)

1340 iterations

Gradient-based optimization is the only option
for large-scale problems

8

1 4 16 64 256

1e1

1e3

1e5

1e7

Linear

SNOPT-FD

SLSQP-FD

SNOPT-AN

SLSQP-AN

Quadratic
ALPSONSGA2

Number of design variables

N
u
m

b
er

of
ev

al
u
at

io
n
s

Figure 1.2: Plot showing how the number of function evaluations required to opti-
mize the multi-dimensional Rosenbrock function scales with the number
of design variables. The gradient-free optimizers (ALPSO, NSGA2) scale
quadratically or worse, while the gradient-based optimizers (SNOPT,
SLSQP) scale linearly with finite-di↵erence derivatives (FD), and better
than linearly with analytic derivatives (AN).

optimization, initially with the approach of Jameson [14] and later with the optimiza-

tion of full aircraft configurations [15, 16, 17]. It has also been successfully applied

to the multidisciplinary optimization of aircraft aerodynamics and structures simul-

taneously using a coupled adjoint approach [18, 19].

Gradient-based optimizers can never guarantee convergence to the global opti-

mum. However, guaranteeing the global optimum is not a realistic goal for large-scale

optimization problems. Even as a local optimizer, a gradient-based optimization al-

gorithm is still useful because it is able to find feasible designs that can improve upon

one selected using experience and human intuition, if this design is used as the initial

point for optimization. The argument is that a local optimum for a problem that

closely represents reality may be more useful than the global optimum of a problem

based on lower-fidelity models.

1.3 The limitations of gradient-based optimization

In Sec. 1.1, it was argued that numerical optimization can maximize the value

of computational models in an engineering design process, especially as the accuracy

of the models improve. Large-scale optimization adds even more value because its

results are likely to be more unintuitive, whether it yields a useful design or reveals

5

[Hwang, PhD dissertation, 2015]

Gradient-free optimizers

Gradient-based

optimizers

Adjoint sensitivity analysis

Model structure and nomenclature

Sensitivity analysis methods—review

9

R(x, y) = 0 F(x, y)x ∈ ℝn

y ∈ ℝk

f ∈ ℝ

F̄(x)

df
dxi

≈
F̄(x + hei) − F̄(x)

h
, h ∈ ℝ

df
dxi

≈
Im[F̄(x + ihei)]

h
, h ∈ ℝ

Finite-difference
method

Complex-step
method

∂R
∂y

T
ψ = −

∂F
∂y

Tdf
dx

=
∂F
∂x

+ ψT ∂R
∂x

with

Adjoint method

df
dxi

=
nt

∑
j=1

df
dtj

∂Tj

∂xi
tj = Tj(x, t1, …, tj−1)where

Algorithmic differentiation (AD)

u = [
x
y
f], R̄(u) =

x − x*
−R(x, y)

f − F(x, y)
∂R̄
∂u

T du
dr

T
= I

Unified derivatives equation (UDE)Cost is O(n)

Cost: ~1 nonlinear solution
of R(x,y)=0

Cost: ~1 linear solution

The combination of AD and the adjoint method
yields maximum efficiency and some automation

10

∂R
∂y

T
ψ = −

∂F
∂y

Tdf
dx

=
∂F
∂x

+ ψT ∂R
∂x

with

Adjoint method

df
dxi

=
nt

∑
j=1

df
dtj

∂Tj

∂xi
tj = Tj(x, t1, …, tj−1)where

Algorithmic differentiation (AD)

Compute these Jacobians
of partial derivatives using AD

‣ Pro: Inherits advantages of both AD
and the adjoint method

‣ Con: Still some implementation effort
required when system models are
assembled or reconfigured

The UDE eliminates implementation effort for
sensitivity analysis when system models are assembled

11

Optimizer

States

R(x, y) = 0

Functionals

f = F(x, y)
c = C(x, y)

x x

y

f , c

Optimizer

States

y = Y(x)

Functionals

f = F(x, y)
c = C(x, y)

x x

y

f , c

Optimizer

Discipline 1

R1(x, y1) = 0

Discipline 2

R2(x, y1, y2) = 0

Functionals

f = F(x, y1, y2)
c = C(x, y1, y2)

x x x

y1 y1

y2

f , c

Optimizer

Discipline 1

R1(x, y1) = 0

Discipline 2

R2(x, y1, y2) = 0

Functionals

f = F(x, y1, y2)
c = C(x, y1, y2)

x x x

y1

y2

y1

y2

f , c

Optimizer

Discipline 1

y1 = Y1(x, y2)

Discipline 2

y2 = Y2(x, y1)

Functionals

f = F(x, y1, y2)
c = C(x, y1, y2)

x x x

y1

y2

y1

y2

f , c

Optimizer

Disc. 1

Disc. 2

Disc. 3

Disc. 4

Disc. 5

Disc. 6

Disc. 7

Functionals

f = F(x, y)
c = C(x, y)

x x x x x

y1 y1 y1

y2 y2 y2 y2

y3 y3 y3

y4 y4

y5

y6 y6

y7

y1

y2

y4

y5

y7

f , c

System model (grey boxes) can
have multiple adjoints (red boxes)

R(u) = 0

Formulate as
a nonlinear

system

Apply the
inverse function

theorem

∂R
∂u

T du
dr

T
I

∂R
∂u

du
dr

= =

[Hwang and Martins, ACM TOMS, 2018]

UDE

‣ Con: Significant up-front implementation
effort required to compute partial derivatives

Sensitivity analysis methods—Pareto front

12

Derivation of the
adjoint equationsNo effort

O(n) nonlinear
solutions

O(1) linear
solution

O(1) nonlinear
solution

Computation
cost

Implementation effort

Finite-

difference

Adjoint

Complex-

step

UDE

AD +

adjointNovel methodology

for system modeling

AD

AD: reverse-mode

algorithmic differentiation

13

Review of sensitivity analysis methods

Novel methodology for system modeling

Demonstration on UAM air taxi design problem

Outline

OpenMDAO (UDE) makes computing derivatives easier
but the current bottleneck is computing partial derivatives

14

Optimizer

Comp. 1

Comp. 2

Comp. 3

Comp. 4

Comp. 5

Comp. 6

Comp. 7

Derivatives

G
ro

u
p

4
(M

o
d
e
l)

G
ro

u
p

3

G
ro

u
p

1
G

ro
u
p

2

O
p
tim

iz
e
r

C
o
m

p
.

1
C

o
m

p
.

2
C

o
m

p
.

3
C

o
m

p
.

4
C

o
m

p
.

5
C

o
m

p
.

6
C

o
m

p
.

7
D

e
riv

s
.

du
dr

T
I=∂R

∂u

T

Step (1): Each component of the model
provides its partial derivatives

Step (2): The modeling framework solves
Eq. (*) to compute the total derivatives

(*)

New system modeling methodology

We resolved this via a new methodology for system modeling
that fully automates adjoint-based sensitivity analysis

15

Front-end Middle-end Back-end

Code written by
engineer in CSDL

Generates graph representation
from CSDL code

Performs graph
transformations

Generates executable code
from graph representation

Executable code in
output language

CSDL is a new algebraic
modeling language

Model represented as a
directed acyclic graph

Automatic code generation paradigm used in
AD and PDE solution frameworks (FEniCS)

CSDL enables this new methodology for system modeling

16

The computational system design language (CSDL) is an
algebraic modeling language for large-scale MDO.

Characteristics:

‣ An embedded domain-specific language (a subset of Python;
intended for system modeling)

‣ Designed to be expressive (easy to use as CSDL code looks
like ordinary Python code)

‣ Large standard library of operations (see right)

‣ Extensive support for tensor algebra to encourage
vectorization (to minimize the number of operations)

‣ It enables a computational graph to be constructed that fully
describes the model (at the level of fundamental operations)

Adjacency matrices of graphs of CSDL models

17

Vortex lattice method Blade element momentum method Pitt—Peters method

Our first back-end that generated OpenMDAO code was slow;
our second back-end generated optimized Python code

18

New system modeling methodology

Front-end Middle-end Back-end

Code written by
engineer in CSDL

Generates graph representation
from CSDL code

Performs graph
transformations

Generates executable code
from graph representation

Executable code in
output language

OpenMDAO
back-end

OpenMDAO
code

Python
back-end

Fast Python
code

The second back-end reduces time & memory by >10x
compared to the OpenMDAO back-end

19

4.2 Research Thrust 2: Tensorial-grid reduction using computer algebra systems

This research thrust aims to develop theory predicting the speed-up with tensorial-grid reduc-
tion (TGR) and to create algorithms that can achieve the best-case speed-up.

4.2.1 Proposed techniques

We will implement tensorial-grid reduction (TGR) as a graph transformation in the middle-end
of the CSDL-based computer algebra system (§3.2). TGR will reduce the shape of certain variables
in the model and add tensor operations (e.g., using the einsum function in Python’s NumPy library)
to convert arrays between their reduced and non-reduced shapes.

To achieve the maximum benefit of TGR, it is necessary that the computational graph represents
the model in its fully decomposed state. With models broken down to the level of unary and binary
operations, the computational graphs are very large and can expose any bottlenecks present in the
backend (§3.2). The current implementation of the libraries for the CSDL-based computer algebra
system uses, as the backend, the OpenMDAO software framework to leverage its capabilities for
chaining together derivatives from multiple units of code. However, OpenMDAO does not scale
well in time or space as it was not developed to run thousands of simple and fast operations. There-
fore, we will use a new backend that eliminates unncessary overhead and uses efficient algorithms
from graph theory for sorting and other operations. An initial implementation of such a backend
shows an order-of-magnitude improvement (Fig. 8).

100 101

Graph size

10°1

100

101

M
em

or
y

co
st

[M
B

]

Memory scaling

OpenMDAO

New backend

100 101

Graph size

10°1

100

T
im

e
co

st
[s

]

Time scaling (model evaluation)

OpenMDAO

New backend

100 101

Graph size

100

101

102

T
im

e
co

st
[s

]

Time scaling (sensitivity analysis)

OpenMDAO

New backend

Figure 8: The proposed research will use a new backend for the CSDL-based computer algebra
system that significantly reduces the time and space overhead compared to OpenMDAO.

4.2.2 Preliminary results

Complexity analysis. We present preliminary results that quantify the ideal computation time
reduction due to TGR. We define a vector t 2 RL such that ti is the evaluation time for the scalar
operation (e.g., addition, multiplication, sine) that computes the ith model variable. For each i 2
{1, . . . , N̄}, we define p̄i 2 N as the number of tensor-product quadrature points in the ith random
variable and assume that p̄i > 1. As in §4.1, p̃ is the number of training points used for interpolation.

14

Sensitivity analysis methods—Pareto front

20

Derivation of the
adjoint equationsNo effort

O(n) nonlinear
solutions

O(1) linear
solution

O(1) nonlinear
solution

Computation
cost

Implementation effort

Finite-

difference

Adjoint

Complex-

step

UDE

AD +

adjointNovel methodology

for system modeling

AD

AD: reverse-mode

algorithmic differentiation

21

Review of sensitivity analysis methods

Novel methodology for system modeling

Demonstration on UAM air taxi design problem

Outline

UCSD-led NASA University Leadership Initiative (ULI) project

22

‣ Three-year project (2021-2024)

‣ 10 investigators, ~30 students

‣ Peer review board (industry, government)

‣ Investigates low-/mid-/high-fidelity large-scale MDO

NASA ULI (Y1): we developed an aircraft design tool called
CADDEE within the new system modeling methodology

23

We implemented tonal noise models in CSDL

24

Visualization of the computational graph

for a tonal noise model in CSDL

Verification of Gutin—Deming and Barry—Maggliozzi

tonal noise models in CSDL

Geometry parametrization
with kinematic relations

Modular interfaces to
physics-based analyses

Full-mission simulation with
trim-state and transient segments

Comprehensive Aircraft high-Dimensional DEsign Environment

24

Objective Gross weight

Design
variables

Rotor radii 9 Battery location 1
Blade twist 36 Battery mass 1
Blade chord 10 Motor length 9
Rotor location 2 Motor diameter 9
Wing area 1 Lift rotor speed 8
Wing AR 1 Propeller speed 2
Wing twist 5 Angle of attack 2
Horizontal tail area 1 Tail trim angle 2
Horizontal tail AR 1 Cruise altitude 1
Horizontal tail location 1
Total design variables: 102

Constraints

Trim residual norm 1 Sound pr. level 1
Final state of charge 1 Stall speed 1
Rotor tip clearance 4 Max. motor torque 2
Motor left-right symm. 4 Rotor lateral symm. 4
Final climb altitude 1
Total constraints: 19

NASA ULI (Y1): we demonstrated full-configuration,
large-scale MDO of an air taxi with only ~30 min runtime

25

26

Design variable Ct. Baseline
MDO

Full
MDO

Rotor radii 9 ●
Blade twist 36 ●
Blade chord 10 ●
Rotor location 2 ●
Wing area 1 ●
Wing AR 1 ●
Wing twist 5 ●
Horizontal tail area 1 ●
Horizontal tail AR 1 ●
Horizontal tail location 1 ●
Battery location 1 ●
Battery mass 1 ● ●
Motor length 9 ● ●
Motor diameter 9 ● ●
Lift rotor speed 8 ● ●
Propeller speed 2 ● ●
Angle of attack 2 ● ●
Tail trim angle 2 ● ●
Cruise altitude 1 ● ●
Total design variables: 102

NASA ULI (Y1): we showed that we can perform
parameter sweeps using the large-scale MDO algorithm

1. Gross mass is reduced ~10% with full MDO (this is the benefit of large-scale MDO)

2. The large-scale MDO algorithm is fast and robust enough for parameter sweeps to
be completed in a few hours (enables engineer to gain insights about trade studies)

Summary

27

We developed a fully automated method for adjoint-based
sensitivity analysis using a three-stage compiler.

This automation enabled, in one year, the development of:

‣ CADDEE, an aircraft design framework (WEIS)

‣ Set of low-fidelity aircraft models (WISDEM) with V&V

‣ A full-configuration air taxi large-scale MDO algorithm

In year 2: we will add mid-fidelity models (OpenFAST)

Front-
end

Middle-
end

Back-
end

Discipline Analysis Timeline Verification Validation

Aerodynamics

VLM (lifting surface) TC1 AS1 -
UVLM (lifting surface) TC2/3 - PS
BEM, PP (rotors) TC1 AS1 AS2, SPEC
VPM with boundaries (all) TC2/3 SELF PE

Acoustics

Tonal TC1 AS1 PE
Tonal (unsteady freq-domain) TC2 - SPEC
Broadband TC1 PS PE
Broadband (new empirical) TC2/3 - PE

Structures

Regression on M4 structures studio data (weights) TC1 SELF AS2, SPEC
Reissner-Mindlin TC2/3 AS1 -
IMGA TC2/3 AS1 AS2, TBD
ShellMesh TC2/3 AS2 -

Stability &
Control

S&C analysis TC1 AS1 SPEC
Controller design & closed-loop analysis TC2/3 - PS, PE

Motors Low-fidelity sizing & performance models TC1 AS2 AS2, SPEC
FEniCS EM model TC2/3 AS1/2 SPEC

Batteries

ECM TC1 AS1 EXP
Pack sizing TC1 - SPEC
Thermal model TC2 TBD EXP
Pack topology optimization TC3 TBD TBD

Coupled &
system-level

CADDEE TC1 - AS2
Aero/structures/acoustics TC2/3 - AS2
TBD TC1/2/3 - SPEC

28

Our ongoing work builds on this new methodology

Mid/high-fidelity MDO of air taxi

Years 2 and 3 of NASA ULI

Further development of CADDEE

Explore applications beyond
aircraft (wind turbines?)

Performance
model

x
u1
u2

f
Uncertainty propagation using CSDL

Preliminary results show potential for
10~100x speed up using CSDL graph

New applications of large-scale MDO

CSDL/CADDEE will be used for robotic
fish (ONR), laser-powered UAVs (DARPA)

These slides include contributions from many people, some of whom are acknowledged below.

Large-scale design optimization (LSDO) lab students: Andrew Fletcher, Victor Gandarillas,
Alexander Ivanov, Anugrah Jo Joshy, Nicholas Orndorff, Marius Ruh, Darshan Sarojini, Luca
Scotzniovsky, Mark Sperry, Bingran Wang, Jiayao Yan.

ULI collaborators: Isaac Asher, Jeff Chambers, David Kamensky, Alicia Kim, Seongkyu Lee, Shirley
Meng, Chris Mi, Andrew Ning, Tyler Winter

29

Thank you!

http://lsdo.eng.ucsd.edu • http://uli.eng.ucsd.edu

We are grateful for financial support from the following organizations:

http://lsdo.eng.ucsd.edu
http://uli.eng.ucsd.edu

	Presentation Title
	What is urban air mobility?
	Electric vertical takeoff and landing (eVTOL) aircraft
	Review of sensitivity analysis methods
	Sensitivity analysis methods—review
	Sensitivity analysis methods—Pareto front
	Novel methodology for system modeling
	Demonstration on UAM air taxi design problem
	NASA ULI (Y1)
	Summary

