Performing multidisciplinary optimization using <u>epen//D/O</u>

John Jasa john.jasa@nasa.gov NASA Glenn Research Center

What is OpenMDAO? Who's using OpenMDAO? Why should I use OpenMDAO? How can I learn more about OpenMDAO?

What is OpenMDAO?

Who's using OpenMDAO?

Why should I use OpenMDAO?

How can I learn more about OpenMDAO?

OpenMDAO is a powerful tool for doing gradient-based multidisciplinary optimization

Multidisciplinary Design Analysis and Optimization

OpenMDAO is a powerful tool for doing gradient-based multidisciplinary optimization

NASA designs complex multidisciplinary systems using OpenMDAO

WISDEM and WEIS are two NREL tools that use the OpenMDAO framework

What is OpenMDAO?

Who's using OpenMDAO?

Why should I use OpenMDAO?

How can I learn more about OpenMDAO?

At NASA, we use OpenMDAO to design tightly coupled aircraft

At NASA, we use OpenMDAO to design tightly coupled aircraft

Multidisciplinary Model					
Propeller	Electrical	Turboshaft	Wing	Trajectory	Analysis
OpenBEMT	ZapPy	pyCycle	OpenAeroStruct	Dymos	Library
	Framework				

Other groups have used OpenMDAO for a variety of applications

- NREL, DOE, ARPA-E: WISDEM and WEIS
 Siemens Gamesa wind turbine design tools
- Air Force Research Lab + Northrup Grumman: Aeropropulsive design optimization
- Aurora Flight Sciences: Aerostructural aircraft wing design
- ONREA: Aircraft and spacecraft design

- Uber Elevate: Electric aircraft powertrain design
- Georgia Tech Research Institute, DOD: Model based systems engineering
- Academics: DTU, BYU, UC San Diego, University of Michigan, Georgia Tech, Stanford, MIT, RPI, Purdue, NTNU

Other groups have used OpenMDAO for a variety of applications

NREL, DOE, ARPA-E: WISDEM and WEIS wind turbine design tools

Wind Energy with Integrated Servo-Control (WEIS) System Optimizer

Other groups have used OpenMDAO for a variety of applications

- NREL, DOE, ARPA-E: WISDEM and WEIS
 wind turbine design tools
- Air Force Research Lab + Northrup Grumman: Aeropropulsive design optimization
- Aurora Flight Sciences: Aerostructural aircraft wing design
- ONREA: Aircraft and spacecraft design

- Raytheon: Missile design
- Uber Elevate: Electric aircraft powertrain design
- Georgia Tech Research Institute, DOD: Model based systems engineering
- Even more! DTU, BYU, UC San Diego, University of Michigan, Georgia Tech, Stanford, MIT, RPI, Purdue, NTNU

UC San Diego, Hwang et al 2019

U of Michigan, Adler et al 2022

What is OpenMDAO?

Who's using OpenMDAO?

Why should I use OpenMDAO?

How can I learn more about OpenMDAO?

You *could* propagate derivatives through your model by hand

You *could* propagate derivatives through your model by hand

A Ya B yb. Уb f C

Derivative of f with respect to x:

$$\frac{df}{dx} = \frac{\partial f}{\partial y_b} \frac{\partial y_b}{\partial y_a} \frac{\partial y_a}{\partial x} + \frac{\partial f}{\partial y_b} \frac{dy_b}{dx} + \frac{\partial f}{\partial y_a} \frac{dy_a}{dx}$$

The $\frac{dy_b}{dx}$ and $\frac{dy_a}{dx}$ terms are

can be found with an adjoint solve

You *could* propagate derivatives through your model by hand but it gets untenable

Find $\frac{df}{dx}$:

solvers within solvers??

let's be honest, we're not doing this by hand!

Making the hard easy and the impossible hard

Connections for propulsor.py

Output (promoted)	Units -	Value =	Units	- Input (promoted)
filter column	filter column	filter column	filter column	filter column
design.fan.ideal_flow.n		array (10,)		design.fan.ideal_flow.n
design.fan.ideal_flow.n_moles		[0.034]		design.fan.ideal_flow.n_moles
design.fan.ideal_flow.n_moles		[0.034]		design.fan.ideal_flow.n_moles
design.fan.ideal_flow.n_moles		[0.034]		design.fan.ideal_flow.n_moles
design.fan.press_rise.Pt_out	lbf/inch**2	[0.06895]	bar	design.fan.ideal_flow.P
design.fan.press_rise.Pt_out	lbf/inch**2	[0.06895]	bar	design.fan.ideal_flow.P
design.fan.press_rise.Pt_out	lbf/inch**2	[1.]	lbf/inch**2	design.fan.ideal_flow.P
design.fan.ideal_flow.props.TP2ls.lhs_TP		array (5, 5)		design.fan.ideal_flow.props.ls2p.A
design.fan.ideal_flow.props.TP2ls.rhs_P		[0.0.0.0.0.]		design.fan.ideal_flow.props.ls2p.b
design.fan.ideal_flow.props.TP2ls.lhs_TP		array (5, 5)		design.fan.ideal_flow.props.ls2t.A
design.fan.ideal_flow.props.TP2ls.rhs_T		[0, 0, 0, 0, 0,]		design.fan.ideal_flow.props.ls2t.b
design.fan.ideal_flow.props.ls2p.x		[0.1 0.1 0.1 0.1 0.1]		design.fan.ideal_flow.props.tp2props.result_P
design.fan.ideal_flow.props.ls2t.x		[0.1 0.1 0.1 0.1 0.1]		design.fan.ideal_flow.props.tp2props.result_T
design_fan_ideal_flow.R	(N*m)/(kg*degK)	[0.00024]	Btu/(lbm*degR)	design.fan.ideal_flow.R
design.fan.ideal_flow.rho	g/cm**3	[0.02497]	lbm/ft**3	design.fan.ideal_flow.rho
design fan ideal flom T	deak	1001	daak	design fon ideal Agus T

💿 Absolute Outputs 🧭 Promoted Outputs 🗹 Output Units 🧭 Values 🗹 Input Units 🗍 Absolute Inputs 💋 Promoted Inputs

Instance Profile for propulsor.py

Reset		
	Function: <newtonsolver#9, initialize="" iter=""></newtonsolver#9,>	
	Local time: 19.0 Local calls: 1 Total time: 19.0 Total calls: 1	

What is OpenMDAO?

Who's using OpenMDAO?

Why should I use OpenMDAO?

How can I learn more about OpenMDAO?

More details and resources

<u>OpenMDAO: an open-source framework for multidisciplinary</u> <u>design, analysis, and optimization. Gray, Hwang et al, SMO 2019</u>

https://openmdao.org/

Subscribe to the <u>YouTube: OpenMDAO</u> and here's a link to the introductory video: <u>https://youtu.be/P6bFtwf485Q</u>

Join the mailing list: send an email with 'subscribe' in the subject to <u>openmdao-announce-join@lists.nasa.gov</u>

Upcoming OpenMDAO workshop

October 24-25, 2022 in Cleveland, Ohio, USA

An opportunity for users and developers to meet and discuss what they'd like to see from OpenMDAO

Sign up at <u>openmdao.org</u>

Thanks!

john.jasa@nasa.gov