

30 August 2022 / WESE Workshop

Multi-Disciplinary, Simulation- and Reliability-Based Design Optimization of FOWT Systems

Dr.Eng. Mareike Leimeister

Challenges and developments within the offshore wind industry

Slide 2 8/29/2022 © Fraunhofer IWES

- » Numerical simulation and optimization environment
- » Coupled design optimization and reliability analyses
- » Results of an application example
- » Conclusion and outlook

Multi-disciplinary, simulation- and reliability-based design optimization of FOWT systems

- » <u>Numerical simulation and optimization</u> <u>environment</u>
- » Coupled design optimization and reliability analyses
- » Results of an application example
- » Conclusion and outlook

Numerical simulation and optimization environment

MoWiT – Modelica[®] library for Wind Turbines¹

Fraunhofer IVES

Modeling language Modelica® 2

- Object-oriented
- Equation-based
- Hierarchical structure
- Multibody approach

Component-based computational models

- Modeling of any state-of-the art wind turbine system
 - Onshore
 - Offshore bottom-fixed
 - Offshore floating
- Fully coupled aero-hydro-servo-elastic simulations
- Time-domain simulations in Dymola^{® 3}

¹ https://www.mowit.info/

² https://www.modelica.org/

³ https://www.3ds.com/de/produkte-und-services/catia/produkte/dymola/

Adapted from Leimeister et al. (2017) doi: 10.3384/ecp17132633

Numerical simulation and optimization environment

Framework for automated simulation and optimization

- » Numerical simulation and optimization environment
- » <u>Coupled design optimization and</u> <u>reliability analyses</u>
- » Results of an application example» Conclusion and outlook

chungking - stock.adobe.c

Coupled design optimization and reliability analyses

Challenges and solution approaches

Challenges

- Floating wind turbine system design
 - Complex
 - Time-demanding
 - Extensive
- Design optimization
 - Highly iterative
 - Complexity-dependent convergence rate
- Reliability analyses
 - Uncertainties
 - Additional simulations
 - Computationally intensive

Leimeister and Kolios (2018) doi: 10.1016/j.rser.2018.04.004

Coupled design optimization and reliability analyses

Pre-processing steps: Response surfaces in the optimization design space

Leimeister and Kolios (2021) doi: 10.1016/j.ress.2021.107666

Coupled design optimization and reliability analyses

Integrated reliability assessment within the iterative design optimization process

- » Numerical simulation and optimization environment
- » Coupled design optimization and reliability analyses
- » <u>Results of an application example</u>
- » Conclusion and outlook

Results of an application example

Design optimization task

Reliability assessment parameters

- 2 stochastic variables
 - Wind speed
 - Significant wave height
- 4 limit states
 - Bending stress at tower base
 - Tensional stress of mooring lines at fairleads
- Reliability criterion: $\beta \ge 3.719$

Optimization problem

- 3 constrained design variables
- 3 global objectives
 - Acceleration at nacelle
 - System inclination
 - Dynamic translational motion
- 18 constraints
 - 10 on design variables and objectives
 - 8 on reliability indices and ultimate stress values

Optimization approach

- 1 pre-identified critical design load case
- Pre-simulations for 210 system geometries and 36 sample points
- Optimizer: NSGAII (Non-dominated Sorting Genetic Algorithm II)
- Iterative optimization process
 - 60 individuals per generation
 - 10,000 simulations in total

Leimeister and Kolios (2021) doi: 10.1016/j.ress.2021.107666

Results of an application example

Deterministic versus reliability-based design optimization

- 10 constraints
- 2,011 simulations
- Slightly higher reduction in outer dimensions

RBDO

- 18 constraints
- 10,000 simulations
- Less critical system performance parameters
- Included reliability criteria and considered uncertainties

Leimeister and Kolios (2021) doi: 10.1016/j.ress.2021.107666

- » Numerical simulation and optimization environment
- » Coupled design optimization and reliability analyses
- » Results of an application example
- » <u>Conclusion and outlook</u>

Conclusion and outlook

Reliability-based design optimization of floating wind turbine systems

Proven methodology

- Accounting for uncertainties in environmental conditions
- Reliability constraints on
 - Structure
 - Mooring lines
- Interpolation approach
 - Based on response surfaces
 - Time- and computationally efficient

Future applications

- Digital twins
 - Development through measurement-based optimization of numerical model
 - Suitability for assessing system condition and estimating, e.g., damage or remaining lifetime
- Reliability-based design optimization of FOWT systems focusing on
 - Lifetime-related aspects
 - Reduced maintenance and repair work required

Fricke et al. (2022) doi: 3384/ecp21181403

Contact

Dr.Eng. Mareike Leimeister Group Global Turbine Dynamics Fraunhofer Institute for Wind Energy Systems IWES Am Seedeich 45 27572 Bremerhaven Germany

Phone +49 471 14290-384 mareike.leimeister@iwes.fraunhofer.de **Fraunhofer**

IWES

raunhofer