Derivatives for Wind Turbine and Wind Farm Design Optimization

Wind Energy Sys. Eng. Workshop August 2022

Brigham Young University Andrew Ning

Finite differencing

Forward Mode Algorithmic Differentiation

Reverse Mode Algorithmic Differentiation

Direct and Adjoint Methods

A Simple Wind Turbine Example

maximize annual energy production chord_i for $i = 1 \dots 5$ by varying $\text{twist}_i \text{ for } i = 1 \dots 4$ tip-speed ratio $pitch_i$ for $i = 1 \dots 80$ $power_i \leq 5 MW \text{ for } i = 1 \dots 80$ subject to $\text{thrust}_i \leq 600 \text{ kN for } i = 1 \dots 80$ flapwise loads_j ≤ 6500 N/m for $j = 1 \dots 17$ $pitch_{i+1} > pitch_i$ for i = 1...79

Finite Differencing (FD)

Time (s)

112

Finite Differencing (FD)

One Residual (FD)

Time (s)

112 67

Finite Differencing (FD)

One Residual (FD)

One Residual with AD

Time (s)

112 67

24

Finite Differencing (FD) One Residual (FD)

One Residual with AD

One Residual with AD/analyt

Time (s)

	112	
	67	
	24	
tic	12	

Finite Differencing (FD) One Residual (FD)

One Residual with AD

One Residual with AD/analyt

Sparse Jacobian

Time (s)

	112	
	67	
	24	
tic	12	
	5	

Ning, A., "Using Blade Element Momentum Methods with Gradient-Based Design Optimization," Structural and Multidisciplinary Optimization, Vol. 64, No. 2, May 2021, pp. 994–1014.

Wind Farm Optimization

Searching Multimodal Design Spaces in Wind Farm Layout Optimization

Thomas, J. J., McOmber, S., and Ning, A., "Wake Expansion Continuation: Multi-Modality Reduction in the Wind Farm Layout Optimization Problem," Wind Energy, Vol. 25, No. 4, Apr 2022, pp. 678–699.

Fatigue Constraints

Fatigue Constraints

Stanley, A. P., King, J., Bay, C., and Ning, A., "A Model to Calculate Fatigue Damage Caused by Partial Waking during Wind Farm Optimization," Wind Energy Science, Vol. 7, No. 1, Mar 2022, pp. 433–454.

Optimization Comparison to LES

Compared with Large-Eddy Simulations," Wind Energy Science, Jan 2022, (in review).

Thomas, J. J., Bay, C. J., Stanley, A. P. J., and Ning, A., "Gradient-Based Wind Farm Layout Optimization Results

Algorithm Comparison for Wind Farm Layout Optimization

W, 270°

Jared J. Thomas, Nicholas F. Baker, Paul Malisani, Erik Quaeghebeur, Sebastian Sanchez Perez-Moreno, John Jasa, Christopher Bay, Federico Tilli, David Bieniek, Nick Robinson, Andrew P. J. Stanley, Wesley Holt, and Andrew Ning, "A Comparison of Eight Optimization Methods Applied to a Wind Farm Layout Optimization Problem"

Optimization with Higher Fidelity Analysis Tools

Caprace, D.-G., Cardoza, A., Ning, A., Mangano, M., He, S., and Martins, J. R. R. A., "Incorporating High-Fidelity Aerostructural Analyses in Wind Turbine Rotor Optimization," AIAA SCITECH 2022 Forum, San Diego, CA, Jan 2022.

Vortex particle methods

0.0 revs

We have derived a new stable set of governing equations

Alvarez, E, and Ning, A., "Reviving the Vortex Particle Method: A Stable Formulation for Meshless Large Eddy Simulation," 2022, (in review)

(c) Reynolds stress between streamwise and radial fluctuating components.

(a) Mean streamwise velocity.

(b) Fluctuating component of the streamwise velocity.

Simulation	CPU Cores	Wall-Clock	Core-Hours	rVPM Speedup
rVPM	32	4.3 hours	140	_
URANS	192	9.6 hours	1.8k	$\sim 10 \mathrm{x} \mathrm{faster}$
LES-ALM	845	$24 \mathrm{hours}$	20k	$\sim 100 \mathrm{x} \mathrm{faster}$
LES-IBM	1000	96 hours	96k	$\sim 500 \mathrm{x} \mathrm{faster}$
DES	1008	300 hours	300k	$\sim 1000 \mathrm{x} \mathrm{faster}$

Tip-mounted Propeller

Experiment: van Arnhem, "Unconventional Propeller-Airframe Integration for Transport Aircraft Configurations," Ph.D. thesis, 2022

Test 1: Elevator deflection

($\alpha=0^\circ,~\delta_e=+10^\circ$)

Tip-mounted Propeller

Test 1: Elevator deflection

($\alpha = 0^{\circ}$, $\delta_e = +10^{\circ}$)

Airborne Wind

Mehr, J., Alvarez, E. J., and Ning, A., "Interactional Aerodynamics Analysis of a Multi-Rotor Energy Kite," Wind Energy, Apr 2022, (In review).

Discrete Adjoint

N x N Brusselator stiff reaction-diffusion PDE

$$egin{aligned} rac{\partial u}{\partial t} &= p_2 + u^2 v - (p_1 + 1) u + p_3 (rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2}) + f(x,y) \ rac{\partial v}{\partial t} &= p_1 u - u^2 v + p_4 (rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2}) \end{aligned}$$

 $f(x,y,t) = egin{cases} 5 & ext{if} \ (x-0.3)^2 + (y-0.6)^2 \leq 0.1^2 ext{ and } t \geq 1.1 \ 0 & ext{else} \end{cases}$

f(x, y, t)

Discrete Adjoint

Method

Forward AD

Reverse AD

Continuous Direct

Continuous Adjoint

Discrete Adjoint (For

Discrete Adjoint (Rev

	Time (ms)
	800
	1040
	3601
	554
rward VJP)	680
everse VJP)	61

Time: 0.000000

McDonnell, T. and Ning, A., Geometrically Exact Beam Theory for Gradient-Based Optimization, (in preparation)

Scaling: 1

ENGINEERING DESIGN OPTIMIZATION Joaquim R.R.A. Martins Andrew Ning

https://mdobook.github.io free download

https://flow.byu.edu

