Progress Towards a Mid-fidelity Wind Turbine MDO Capability for Advanced Aeroelastic Rotors

2nd NREL Wind Energy SE Workshop
January 29, 2013

Dr. Curran Crawford
Assistant Professor
Department of Mechanical Engineering
Email curranc@uvic.ca
Tel 1-250-721-7960
Web www.ssdl.uvic.ca
Outline

• Motivation
• Aerodynamic models
• Structural models
• MDO framework
• Initial results
• Future directions
Larger and advanced machine concepts require better tools & optimization

• Composite layups
 – Bend-twist coupling
 – Large non-linear deflections

• Non-straight blades
 – Sweep & out-of-plane curvature
 – Tailoring of vorticity location

• Need to consider system
 – Unsteady performance
 – Multidisciplinary optimization
 • Continuous range of operating points
 • Efficient gradient calculations
Aerodynamic models
Blade Element Momentum (BEM) theory is the standard tool

- Momentum balance between far upstream and downstream
 - Bernoulli theory used to get blade conditions
- Explored various correction models
 - Centrifugal pumping
 - Hub loss model
 - Turbulent wake models
 - Vortex-tube based coning and expanding wake models
Lagrangian vortex model required for full generality

• Cost vs fidelity
 – Grid-based CFD: hrs-days
 – BEM not general: sec

• Vortex methods
 – Min-10’s of mins
 – Adaptively grid where wake vorticity exists
 – Many flavours!
 – Many element types
 • Particles, lines, sheets
 – Fixed & free wake
LibAero is our in-house C++ based code

• **Modularity**
 – Object oriented approach for testing of various sub models

• **Key classes**
 – Grid: geometry information & connectivity
 – Influence elements: anything that induces a velocity
 • Free-stream
 • Particles, filaments, wakes
 • Fast multi-pole expansion
 – Solvers: evolve solution

• **Coding features**
 – Inheritance, templating, OpenMP
On-blade (inner) Prandtl-Weissinger lifting line model

• Non-linear 2d airfoil lookup
 – Indexed by airfoil thickness, Re, AOA
 – Relate C_l to bound circulation

\[\Gamma = \int_A \omega \cdot dA = \frac{\nu Re C_l}{2} \]

• 3d corrections
 – Centrifugal pumping
 – Sweep
Wake models are arbitrary combinations of particles, filaments or sheets.
Not your standard potential flow method!

- Actually a vortex element based solution to the vorticity-velocity equations
 - Helmholtz decomposition into scalar & vector potentials
 - Viscosity present in core models
 - Gaussian diffusion
 - Exact solution for a point vortex
 \[
 \sigma_{t+\Delta t} = \sqrt{\sigma_t^2 + 2\nu\Delta t}
 \]

- Strength deformation term
 - Implicit in filament and sheet elements
 - Must be explicitly computed for particles
Speed is key, so fast multipole method (FMM) employed

• Use lumping to compute influence far away
• Reduce computational burden
 – $O(N^2)$ to $O(N)$
• Want balanced tree
 – Turbine wakes not represented well by standard octrees
 – Use binary tree
• FMM
 – Precompute far-away influences (multipoles)
We’ve implemented a true 2nd order explicit solver

- Methods can look 2nd order from advection
 \[x_{t+\Delta t} = x_t + \Delta t u_x(t) + \frac{1}{2}(\Delta t)^2(x_t \cdot \nabla x_t) + O(\Delta t)^3 \]
- But they are not!
 - Typically advect then diffuse for viscous splitting
 \[\omega_n = (A(\Delta t)D(\Delta t))^n \omega_0 \]
 - Can prove from Fourier expansions that this is only first order accurate
 - Need a 2nd order accurate viscous splitting scheme
 \[\omega_n = (A(\frac{\Delta t}{2})D(\Delta t)A(\frac{\Delta t}{2}))^n \omega_0 \]
Aerodynamic validation against Mexico and in-house rotor tests
Generally 2nd order method better, especially at high λ

<table>
<thead>
<tr>
<th>Method</th>
<th>10 m/s</th>
<th>15 m/s</th>
<th>24 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEXICO</td>
<td>0.299</td>
<td>0.437</td>
<td>0.227</td>
</tr>
<tr>
<td>First Order Method N=15</td>
<td>0.386</td>
<td>0.478</td>
<td>0.211</td>
</tr>
<tr>
<td>First Order Method N=30</td>
<td>0.343</td>
<td>0.466</td>
<td>0.234</td>
</tr>
<tr>
<td>First Order Method N=45</td>
<td>0.338</td>
<td>0.462</td>
<td>0.237</td>
</tr>
<tr>
<td>Second Order Method N=15</td>
<td>0.335</td>
<td>0.464</td>
<td>0.235</td>
</tr>
<tr>
<td>Second Order Method N=30</td>
<td>0.328</td>
<td>0.458</td>
<td>0.239</td>
</tr>
<tr>
<td>Second Order Method N=45</td>
<td>0.319</td>
<td>0.452</td>
<td>0.242</td>
</tr>
</tbody>
</table>
Numerical issues greatly improved

• Can converge at high λ where explicit diverged
• Only need one full Jacobian re-eval
Structural models
Again a tradeoff between fidelity and complexity

• Full brick or shell FEM
 – Needed for local details and buckling analysis
 – Mostly overkill for aeroelastic simulations

• Separate beam and cross-sectional analysis
 – Geometrically exact beam theory (GEBT)
 • Greatly reduce number of DOFs
 • Fully non-linear axial, bending, torsional deflections
 – Variational asymptotic beam section (VABS) analysis
 • Arbitrary cross-section layup
 • Yields full coupling matrix
 • Can recover stresses \textit{a posteriori}
GEBT captures position ϕ and orientation Λ of cross-sections

- Euler-Bernoulli theory has section orientation assumptions
- The GEBT governing residual equation is

$$R = \left[-\frac{d}{ds} \times \frac{d\phi}{ds} \right] \left\{ \begin{array}{c} n \\ m \end{array} \right\} - \left\{ \begin{array}{c} \tilde{n} \\ \tilde{m} \end{array} \right\}$$

where \tilde{n} and \tilde{m} are external forces and moments and the internal forces/moments are

$$\left\{ \begin{array}{c} n \\ m \end{array} \right\} = \left[\begin{array}{cc} \Lambda & 0_3 \\ 0_3 & \Lambda \end{array} \right] [C] \left\{ \begin{array}{c} \gamma \\ \kappa \end{array} \right\}$$
VABS theory has been well validated

- Solve for warping solution in terms of applied beam strains
 - Minimize energy of internally induced strains
 - Neglect asymptotically small terms (need up to 2nd terms to get shear strain/stiffness)

- Transform to section stiffness matrices for GEBT
An adjoint gradient method has been derived for GEBT/VABS

\[\mathbf{R}(x, y) = 0 \]

State variables \(\frac{dJ}{dy} \) Design variables

Objective function

\[
\frac{dJ}{dy} = \frac{\partial J}{\partial y} + \int \left\{ \frac{\partial J}{\partial x} \right\}^T \left\{ \frac{dx}{dy} \right\} d\mathcal{D} \\
= \frac{\partial J}{\partial y} + \int \left\{ \frac{\partial J}{\partial R} \right\}^T \left[\frac{\partial R}{\partial x} \right] \left\{ \frac{dx}{dy} \right\} d\mathcal{D} \\
= \frac{\partial J}{\partial y} + \int \left\{ \frac{\partial J}{\partial R} \right\}^T \left\{ \frac{\partial R}{\partial y} \right\} d\mathcal{D}
\]

Residual of governing equations (must be satisfied)

Direct, forward method 1 solve for each DV

Adjoint vector, solved for with non-linear adjoint equation
MDO framework

• Steady-state operating conditions
 – Chord/twist profile DVs
 – Sectional layup DVs
 – Maximize power/material volume

• SQP algorithm
 – FD gradients of block Gauss-Seidel coupled solve
A multidisciplinary feasible (MDF) MDO framework is used.
Structural definition based on slabs to reflect real layups (not splines)

- Sectional coordinate scheme

- Natural structure grids for VABS
Each slab defines a laminate layup

- l_{i1}
- l_{i0}
- l_{i2}
- l_{i3}
- l_{i4}
- l_{i5}

$\pm 45^\circ$ Crack Prevention

Material A

Material B

Fiber Angle
The slab width profile is controlled by splines (manufacturing possible)
VABS section computations at natural transition points along the blade
Explicit aerodynamic gradients have proved a challenge

Able to optimize from C_p 0.458 to 0.541 for Mexico rotor baseline with appropriate step size, free wake aerodynamics only
Structures-only optimization for bend-twist coupling with fixed aerodynamic loads

• Sandia 100m uniaxial fibreglass blade baseline
• Traditional spline-based vs slab-based parameterization
 – 2 slab
 – 3 slab
Slab-based designs are lighter
Initial coupled MDO test optimization with Sandia 100m baseline design

- Used a fixed wake to aid convergence
Relaxed wake coupled optimization with adapted step sizes for each DV
Future directions

• Continue to improve aero model
 – Try implicit method in MDO framework

• Incorporate unsteadiness
 – Controller, performance, IEC fatigue, etc
 – Reduced order models

• Composite properties from base constituents

• MDO
 – Coupled adjoint
 – Full wind-speed range
 – Other system components: generator, tower, etc
 – Alternative decomposed MDO frameworks
Thanks for listening!

• And thanks to all those hard-working students
 – Current: Mike McWilliam, Stephen Lawton, Manuel Fluck, Ghulam Mustafa, Iman Khorsand, Matt Hall
 – Past: Shane Cline, Patricio Lillo

• E-mail: curranc@uvic.ca