

Systems Engineering Activities at Clemson University's International Center for Automotive Research (CU-ICAR) and Wind Turbine Drivetrain Testing Facility

> Ryan F. Schkoda, Ph.D. Postdoctoral Fellow Wind Turbine Drivetrain Testing Facility Charleston, SC

Public / Private Partnerships Focused on Meeting Industry's Needs

- Full Scale Testing / Applied Research
- Multidisciplinary Education (MS & PhD)/ Workforce Development
- Collaboration with Industrial Partners and Government

Protection of Customer Intellectual Property

Changing Focus of Automotive Engineering

CU-ICAR Research Activities

Professor	Field	Research			
Johnell Brooks	Phys	Abnormal Human- Automotive Interaction and aging driver studies			
Pierluigi Pisu	EE	Develop a real-time in- vehicle energy management control strategy	Grid power management		
David Smith	CE	Rapid prototyping of vehicle cockpit for human- technology interaction	network protocol Collect info on power demand/priority Communication network protocol		
Paul Venhovens	ME	Deep Orange	Traffic management		

Deep Orange: Innovations in Automotive Engineering Education

Dr. Paul Venhovens Background: Mechanical Engineering

INTERNATIONAL CENTER FOR AUTOMOTIVE RESEARCH

Deep Orange: A New Teaching Paradigm

Market Analyses

Start: Day 1

Target Validation Graduation

Validation End: Day 712

New prototype vehicle releases from two-year Development Cycles

An integral feature of our MS/PhD Research & Education Program

System Design

Day 193

System Integration Day 523

A Neutral Platform for Academic, Industry and Government Collaboration

Innovations that will be Integrated, Proven and Showcased

Collaboration with the Art Center College of Design, Pasadena, CA

Business model based on proven CU-ICAR model

- Multidisciplinary
- Full Scale Testing
- Applied Research
- Graduate Education

CLEMSON UNIVERSITY WIND TURBINE DRIVETRAIN TESTING FACILITY

+ Zucker Family Graduate Education Center

Automotive Engineering

Energy Systems

WTDTF Overview

Objective: Accelerate the development of new technology into the wind market to reduce the cost of energy delivered.

Mission: Provide (1) High Value, (2) High Quality and (3) Cost Competitive testing and validation services to industry.

Establish long term partnerships with industry for work force development, research and education.

Rendering vs. Actual

 7.5 MW gearbox on test stand

Rendering vs. Actual

- Load application unit housing being assembled
- Notice people in both images

Dynamic Systems Modeling

14

Integrated Test Rig Model

Modeling Objectives

- 1. Characterize the accuracy of the load application unit and determine how non-torque loading affects the test bench and unit under test.
- 2. Develop both linear and non-linear models for the test bench and unit under test that capture time domain behavior (transient and steady state) and frequency domain behavior (vibration and limit cycle).
- 3. Simulate and evaluate automated behavior such as automated test sequence execution and purposely tripping automatic safety systems.
- 1. Characterize the stiffness of the test bench and the unit under test.
- 2. Analyze individual control system performance as well as the interaction between the various different controllers.
- 3. Model the various hydraulic systems including the hydraulic pumps, the load application unit's force actuation pistons, the hydraulic slide bearings, and the lubrication systems.
- 4. Quantify the resultant load vectors acting on the bearings throughout the test rig and unit under test.
- 5. Evaluate and improve model fidelity.
- 1. Develop nacelle models specific to customer test articles as opposed to generic or general purpose nacelle models.
- 2. Seek an in depth understand of how the high speed shaft behaves and affects the components it is attached to.
- 3. Simulate instantaneous power loss and heat rejection during operation.

High Priority Middle Priority Low Priority

Model Development Strategy

- Always use the best modeling environment for the particular task
- Fully exploit data exchange or co-simulation capabilities

Virtual Operation Visualization

Resultant Force on main shaft

Vantage Point

 Simultaneous Multi-body and control system simulations

Analysis Approach Comparison

Analysis Approach						
Pure Simulation	Hardware in the Loop	Test Bench	Field Testing	Farm Operation		
		Cost				
\$	\$\$	\$\$\$	\$\$\$\$	\$\$\$\$\$		
		Validit	У			
Less				More		
		Duratio	n			
Short				Long		
				20		

Hardware in the Loop

Hardware in the Loop

- Control Hardware is now "in the loop."
- Cost effective...
- Faster...
- Safer...
- And more flexible than using actual equipment
- Low risk (actual) equipment exercised with simulation of high risk equipment

Comprehensive and Virtual Test Operation

Thank you

