

- $\boldsymbol{\cdot}$ Introduction and motivation
- Approach:
 - Constrained multi-disciplinary optimization by physics-based cost of energy (CoE) models
 - Multi-level analysis (1D spatial beams+2D sections, 3D FEM)
 - Comprehensive wind turbine simulation tools
 - Tool validation/calibration by wind tunnel testing
- Applications and results
- Conclusions and outlook

Introduction and motivation

- Approach:
 - Constrained multi-disciplinary optimization by physics-based cost of energy (CoE) models
 - Multi-level analysis (1D spatial beams+2D sections, 3D FEM)
 - Comprehensive wind turbine simulation tools
 - Tool validation/calibration by wind tunnel testing
- Applications and results
- Conclusions and outlook

Holistic Design of Wind Turbines

Holistic Design of Wind Turbines

Current approach to design: discipline-oriented specialist groups

There is a need for multi-disciplinary optimization tools, which must:

- Be <u>fast</u> (hours/days) (on <u>standard desktop hardware</u>!)
- Provide workable solutions in <u>all areas</u> (aerodynamics, structures, controls) for specialists to refine/verify
- Account <u>ab-initio</u> for all complex couplings (no fixes a posteriori)
- Use <u>fully-integrated</u> tools (no manual intervention)

They will **never replace** the experienced designer! ... but would greatly speed-up design, improve exploration/knowledge of design space

Holistic Design of Wind Turbines

Focus of present work: integrated multi-disciplinary (holistic) constrained design of wind turbines, i.e. optimal coupled sizing of:

- Aerodynamic shape
- Structural members (loads, aero-servo-elasticity and controls)

Constraints: ensure a viable design by enforcing all necessary design requirements

Figure of merit: physics-based model of the cost of energy

Applications:

- Sizing of a new machine
- Improvement of a tentative configuration
- Trade-off studies (e.g. performance-cost)
- Modifications to exiting models

- Introduction and motivation
- Approach:
 - Constrained multi-disciplinary optimization by physics-based cost of energy (CoE) models
 - Multi-level analysis (1D spatial beams+2D sections, 3D FEM)
 - Comprehensive wind turbine simulation tools
 - Tool validation/calibration by wind tunnel testing
- Applications and results
- Conclusions and outlook

Optimization-Based Multi-Level Blade Design

Aeroservoelastic-Level Optimization

Multi-Level Optimization

Constraint/model update heuristic (to repair constraint violations)

3D FEM Blade Modeling

3D CAD with solid and shell (with or without offsets) meshing directly from coarse-level model data:

Physics-based Cost Function

Cost model (Fingersh at al., 2006):

 $CoE = \frac{FixedChangeRate * InitialCapitalCost(p)}{AEP(p)} + AnnualOperatingExpenses(p)$

where p = design parameters (at the moment for rotor and tower)

When possible, avoid scaling relationships and compute cost item directly from model information

Example:

- Detailed blade geometry \Rightarrow bill of materials \Rightarrow blade material cost
- Detailed tower geometry ⇒ bill of materials ⇒ tower material cost
- Torque ⇒ Gear-box mass (from mass scaling model)
- Etc. ...

Ideally this should be done for all major components (when not possible, use scaling relationships)

The Importance of Multi-Level Blade Design

0.9

0.8

0.1

0.2

0.3

0.4

0.5

z/L_{span}

- Introduction and motivation
- Approach:
 - Constrained multi-disciplinary optimization by physics-based cost of energy (CoE) models
 - Multi-level analysis (1D spatial beams+2D sections, 3D FEM)
 - Comprehensive wind turbine simulation tools
 - Tool validation/calibration by wind tunnel testing
- Applications and results
- Conclusions and outlook

- Introduction and motivation
- Approach:
 - Constrained multi-disciplinary optimization by physics-based cost of energy (CoE) models
 - Multi-level analysis (1D spatial beams+2D sections, 3D FEM)
 - Comprehensive wind turbine simulation tools
 - Tool validation/calibration by wind tunnel testing
- Applications and results
- Conclusions and outlook

Validation/Calibration of Modeling Tools by Wind Tunnel Testing

Wind tunnel testing:

- Cons:

Usually impossible to exactly match all relevant physics due to scaling

+ Pros:

Better control/knowledge of conditions/errors/disturbances Much lower costs

Does not replace simulation nor field testing, but works in synergy with them

Wind tunnel role is not limited to aerodynamics

Wind Turbine Wind Tunnel Models

Turbulence (boundary layer) generators

Height = 1.78 m

Wind tunnel model of the Vestas V90 wind turbine

Aeroelastically-scaled

Holistic Design of Wind Turbines

Real-time individual blade pitch and torque control

Wind Research Lab

Applications: Aerodynamics and Beyond

LES+lifting line (Schito & Zasso 2012)

Emergency shutdown **v**

Floating wind turbine **v**

Wake

interference

conditions <

WT

WT 2

Individual blade pitch control 🔻

Wind direction observer

- Introduction and motivation
- Approach:
 - Constrained multi-disciplinary optimization by physics-based cost of energy (CoE) models
 - Multi-level analysis (1D spatial beams+2D sections, 3D FEM)
 - Comprehensive wind turbine simulation tools
 - Tool validation/calibration by wind tunnel testing
- Applications and results
- Conclusions and outlook

Active Load Mitigation: Smart Blades

Flow control devices:

- TE flaps
- Microtabs
- Vortex generators
- Active jets (plasma, synthetic)
- Morphing airfoils

However: complexity/availability/maintenance Really applicable offshore in the foreseeable future?

⁽Credits: Smart Blade GmbH)

Integrated Passive and Active Load Alleviation

AR

Conclusions

- Optimization-based design tools: enable automated design of wind turbines with a-priori satisfaction of all desired design requirements
- Physics-base CoE: tries to avoid as much as possible scaling relationships in favor of direct sizing of each principal component
- Multi-level design: aeroservoelastic models for fast pre-design, followed by detailed FEM to capture local effects
- **Computational cost**: reasonable for an industrial environment (a couple of days to complete a design loop), using standard low cost computing hardware
- Outlook:
 - Working on multiple applications to build confidence in tools
- Expand physics-based sizing of sub-systems (generator, nacelle, ...)

Acknowledgements

Work in collaboration with:

M. Bassetti, P. Bettini, M. Biava, D. Boroni, F. Campagnolo, S. Calovi, S. Cacciola, A. Croce, F. Cadei, G. Campanardi, M. Capponi, G. Galetto, A. Gonzalez de Céspedes, F. Gualdoni, L. Maffenini, P. Marrone, M. Mauri, V. Petrovic, C.E.D. Riboldi, S. Rota, G. Sala, A. Zasso

Funding provided by Vestas Wind Systems A/S, Clipper Windpower, Alstom Wind, DOE National Renewable Energy Laboratory, Italian Ministry of Education University and Research, partial support provided by Bachmann GmbH

