

- Introduction and motivation
- Approach:
	- Constrained multi-disciplinary optimization by physics-based cost of energy (CoE) models
	- Multi-level analysis (1D spatial beams+2D sections, 3D FEM)
	- Comprehensive wind turbine simulation tools
	- Tool validation/calibration by wind tunnel testing
- Applications and results
- Conclusions and outlook

• Introduction and motivation

- Approach:
	- Constrained multi-disciplinary optimization by physics-based cost of energy (CoE) models
	- Multi-level analysis (1D spatial beams+2D sections, 3D FEM)
	- Comprehensive wind turbine simulation tools
	- Tool validation/calibration by wind tunnel testing
- Applications and results
- Conclusions and outlook

Holistic Design of Wind Turbines

Holistic Design of Wind Turbines

Current approach to design: discipline-oriented specialist groups

There is a need for **multi-disciplinary optimization tools**, which must:

- Be fast (hours/days) (on standard desktop hardware!)
- Provide workable solutions in all areas (aerodynamics, structures, controls) for specialists to refine/verify
- Account ab-initio for all complex couplings (no fixes a posteriori)
- Use fully-integrated tools (no manual intervention)

They will **never replace** the experienced designer! ... but would greatly speed-up design, improve exploration/knowledge of design space

Holistic Design of Wind Turbines

Holistic Design of Wind Turbines

Holistic Design of Wind Turbines

Focus of present work: integrated multi-disciplinary (holistic) constrained design of wind turbines, i.e. optimal coupled sizing of:

- Aerodynamic shape
- Structural members (loads, aero-servo-elasticity and controls)

Constraints: ensure a viable design by enforcing all necessary design requirements

Figure of merit: physics-based model of the cost of energy

Applications:

- Sizing of a new machine
- Improvement of a tentative configuration
- Trade-off studies (e.g. performance-cost)
- Modifications to exiting models

- Introduction and motivation
- Approach:
	- Constrained multi-disciplinary optimization by physics-based cost of energy (CoE) models
	- Multi-level analysis (1D spatial beams+2D sections, 3D FEM)
	- Comprehensive wind turbine simulation tools
	- Tool validation/calibration by wind tunnel testing
- Applications and results
- Conclusions and outlook

Optimization-Based Multi-Level Blade Design

Aeroservoelastic-Level Optimization

Multi-Level Optimization

Constraint/model update heuristic (to repair constraint violations)

3D FEM Blade Modeling

3D CAD with solid and shell (with or without offsets) meshing directly from coarse-level model data:

Physics-based Cost Function

Cost model (Fingersh at al., 2006):

 $\mathcal{C}oE = \frac{\textit{FixedChangeRate} * \textit{InitialCapitalCos}}{\textit{AFD}(n)}$ $\overline{AEP(p)}$ + AnnualOperatingExpenses(p)

where $p =$ design parameters (at the moment for rotor and tower)

When possible, **avoid scaling relationships** and compute cost item **directly from** model information

Example:

Holistic Design of Wind Turbines

Holistic Design of Wind Turbines

- Detailed blade geometry \Rightarrow bill of materials \Rightarrow blade material cost
- Detailed tower geometry \Rightarrow bill of materials \Rightarrow tower material cost
- Torque \Rightarrow Gear-box mass (from mass scaling model)
- Etc. ...

Ideally this should be done for all major components (when not possible, use scaling relationships)

The Importance of Multi-Level Blade Design **Blade**
- Geometrically exact be

Stress/strain/fatigue:
- Fatigue constraint not satisfied at

- first iteration on 3D FEM model Modify constraint based on 3D FEM analysis
- Converged at 2nd iteration

- **Buckling:**
- Buckling constraint not satisfied at first iteration
- Update skin core thickness
- Update trailing edge reinforcement strip
- Converged at 2nd iteration

- Introduction and motivation
- Approach:
	- Constrained multi-disciplinary optimization by physics-based cost of energy (CoE) models
	- Multi-level analysis (1D spatial beams+2D sections, 3D FEM)
	- Comprehensive wind turbine simulation tools
	- Tool validation/calibration by wind tunnel testing
- Applications and results
- Conclusions and outlook

- Introduction and motivation
- Approach:
	- Constrained multi-disciplinary optimization by physics-based cost of energy (CoE) models
	- Multi-level analysis (1D spatial beams+2D sections, 3D FEM)
	- Comprehensive wind turbine simulation tools
	- Tool validation/calibration by wind tunnel testing
- Applications and results
- Conclusions and outlook

Validation/Calibration of Modeling Tools by Wind Tunnel Testing

Wind tunnel testing:

- Cons:

Usually impossible to exactly match all relevant physics due to scaling

+ Pros:

 Better control/knowledge of conditions/errors/disturbances Much lower costs

Does not replace simulation nor field testing, but works in **synergy** with them

Wind tunnel role is not limited to aerodynamics

Wind Turbine Wind Tunnel Models

Turbulence (boundary layer) generators

Height = 1.78 m

Wind tunnel model of the Vestas V90 wind turbine

• Aeroelastically-scaled

Holistic Design of Wind Turbines

Holistic Design of Wind Turbines

• Real-time individual blade pitch and torque control

 $Radius = 1m$

Wind Research Lab

Applications: Aerodynamics and Beyond

No IPC

IPC₁

Emergency shutdown ▼ Floating wind turbine ▼

Individual blade pitch control ▼ Wind direction observer ▼

- Introduction and motivation
- Approach:
	- Constrained multi-disciplinary optimization by physics-based cost of energy (CoE) models
	- Multi-level analysis (1D spatial beams+2D sections, 3D FEM)
	- Comprehensive wind turbine simulation tools
	- Tool validation/calibration by wind tunnel testing
- Applications and results
- Conclusions and outlook

Active Load Mitigation: Smart Blades

Flow control devices:

• TE flaps

• …

- **Microtabs**
- Vortex generators
- Active jets (plasma, synthetic)
- Morphing airfoils

However: complexity/availability/maintenance Really applicable offshore in the foreseeable future?

⁽Credits: Smart Blade GmbH)

Integrated Passive and Active **Load Alleviation**
Active load alleviation:
Active load alleviation:

有量

Conclusions

- **Optimization-based design tools:** enable automated design of wind turbines with a-priori satisfaction of all desired design requirements
- **Physics-base CoE**: tries to avoid as much as possible scaling relationships in favor of direct sizing of each principal component
- **Multi-level design**: aeroservoelastic models for fast pre-design, followed by detailed FEM to capture local effects
- **Computational cost:** reasonable for an industrial environment (a couple of days to complete a design loop), using standard low cost computing hardware

• Outlook:

- Working on multiple applications to build confidence in tools
- Expand physics-based sizing of sub-systems (generator, nacelle, ...)

Acknowledgements

Work in collaboration with:

M. Bassetti, P. Bettini, M. Biava, D. Boroni, F. Campagnolo, S. Calovi, S. Cacciola, A. Croce, F. Cadei, G. Campanardi, M. Capponi, G. Galetto, A. Gonzalez de Céspedes, F. Gualdoni, L. Maffenini, P. Marrone, M. Mauri, V. Petrovic, C.E.D. Riboldi, S. Rota, G. Sala, A. Zasso

Funding provided by Vestas Wind Systems A/S, Clipper Windpower, Alstom Wind, DOE National Renewable Energy Laboratory, Italian **Ministry of Education University and Research**, partial support provided by **Bachmann GmbH**

