Processed Drive Cycle Data for TSDC Surveys/Studies with Second-by-Second GPS Vehicle Speed Profiles

Data Dictionary for Public Download Files
National Renewable Energy Laboratory
<u>Transportation Secure Data Center</u>

PROCESSED DRIVE CYCLE ROUTINE

A GPS data filtration routine was developed by researchers at the National Renewable Energy Laboratory (NREL) to filter erroneous data points in individual drive cycles sourced from GPS devices mounted on board both light- and medium-/heavy-duty vehicles. The routine for analyzing GPS speed-time data for drive cycle applications consists of seven logic-based filters arranged in order of increasing complexity. They are as follows:

- 1. Remove duplicate records and data with negative values or differential time steps.
- 2. Replace outlying high/low speed values.
- 3. Remove zero-speed signal drift when the vehicle is stopped.
- 4. Replace false zero-speed records.
- 5. Amend the gaps in the data.
- 6. Repair outlying acceleration/deceleration values.
- 7. De-noise and condition the final signal.

For more detail on the NREL GPS data filtration routine, see <u>GPS Data Filtration Method for Drive Cycle</u> <u>Analysis Applications</u> by Adam Duran and Matthew Earleywine.

If a given vehicle contains an excessive amount of removed or regenerated drive cycle data points it is excluded from these processed drive cycle files. The vehicle retention rate for each of the studies containing an on-board vehicle-GPS component is outlined in the table below:

Table 1: Vehicle Retention Rate for NREL Filtration Routine

Dataset	Veh Count	Retain Count	Retain Percent
ARC	1653	1651	99.9%
AKDOT	282	276	97.9%
CALTRANS	2910	2903	99.8%
CAL_SCAG	249	239	96.0%
СМАР	408	363	89.0%
DVRPC	821	802	97.7%
MARC	408	392	96.1%
TXDOT	3404	3157	92.7%
TOTAL	9032	8705	96.4%

How to Cite the TSDC:

If you use TSDC data in a publication, please send a notification to **tsdc@nrel.gov** and include a citation that is consistent with the following format in your publication:

"Transportation Secure Data Center" (2015). National Renewable Energy Laboratory. | Date TSDC data was accessed | . www.nrel.gov/tsdc.

DATA DICTIONARY

The data provided to NREL are processed using a GPS data filtration routine (outlined above). The processed data can be divided into two categories: summary data and individual vehicle data. The summary data contains two tables: the "vehicles" table and the "vehicles_travel_days" table. The individual vehicle data contains two table types: daily travel tables (represented by the date of travel) and a "day_summary" table.

A text file titled "TSDC_web_version #.txt" has been included in each download outlining the dates of the most recent TSDC web update, the most recent data dictionary revision, and the most recent generation of the cleansed publicly available data files.

SUMMARY DATA [-]

The NREL processed drive cycle summary data contains dataset summaries of the specific vehicles and travel dates covered by the study. For each study, two tables are included: the "vehicles" table and the "vehicles_travel_days" table.

Summary Data Tables:

vehicles [-]

The "vehicles" table contains a summary of the vehicles represented in the study. Vehicle year, make, and type are included in this table.

Name	Data Type	Comment
sampno	numeric(7,0)	Unique household identifier
vehno	integer	Unique vehicle identifier
vehicle_gps	character varying(25)	GPS participant type: Diary-Vehicle or Vehicle (only)
veh_type	character varying(25)	NREL-defined vehicle type: Auto 2-seat, Auto sedan, Pick-up truck, Recreational vehicle, Sport utility vehicle, Station wagon, Van, or Unknown
model_year	integer	Vehicle model year
veh_make	character varying(25)	Vehicle make

fuel	character varying(25)	Fuel type: Diesel, Flex fuel, Gas, Hybrid, or Don't know
veh_own	character varying(25)	Vehicle ownership: Borrowed, Employer, or Ownded/Leased

vehicles_travel_days [-]

The "vehicles_travel_days" table contains the respective travel dates for each sampno/vehno combination.

Name	Data Type	Comment
sampno	numeric(7,0)	Unique household identifier
vehno	integer	Unique vehicle identifier
travel_date	date	Date of travel

INDIVIDUAL VEHICLE DATA [-]

The NREL processed individual vehicle drive cycle data contains travel summaries for each retained vehicle in a given dataset. For each vehicle, two types of tables are included: daily travel tables (represented by the date of travel) and a "day summary" table.

Individual Vehicle Data Tables:

daily travel tables [-]

The daily travel tables are represented by the date of travel and contain a summary of the vehicle travel for a given travel day. Second-by-second speed and acceleration profiles are included in these tables. Note that zero speed points are largely excluded in order to reduce file size and to deal with inconsistencies between the original studies for distinguishing key-on idle periods from key-off parked periods. It is therefore up to you as the user of this processed data to decide how you would like to make this distinction. NREL recommends referencing the timestep data column and when the period between sections of vehicle driving ("microtrips") is less than 300 seconds (five minutes) assume that the vehicle is idling and correspondingly use periods longer than five minutes to designate trip breaks when the vehicle is assumed to be off.

Name	Data Type	Comment
timestamp	timestamp without time zone	Timestamp
cycle_sec	integer	Total seconds elapsed from first travel
timestep	integer	Time elapsed between points
speed_mph	double precision	Vehicle speed (in MPH)
accell_meters_ps	double precision	Vehicle acceleration (in meters per sec.)

day_summary [-]

The "day_summary" table contains an extensive list of summary statistics for each day of travel by each retained vehicle for a given study. Definitions for statistics such as kinetic intensity, aerodynamic speed, and characteristic acceleration can be found in the <u>Duty Cycle Characterization</u> publication by Michael O'Keefe, et al.

Name	Data Type	Comment
device_id	character_varying(9)	Device identifier generated as follows:
device_id	character_varying(3)	sampno_vehno
start_ts	timestamp without time	The local timestamp of the first recorded
	zone	point for the trips
end_ts	timestamp without time	The local timestamp of the last recorded point
_	zone	for the trips
absolute_time_duratio		Absolute time duration in hours. This is
n_hrs	double precision	calculated on the total number of samples collected and independent of real time
11_1113		duration.
speed_data_duration_		Total number of hours of data collected.
hrs	double precision	Includes zero speed components.
driving_data_duration_		Duration of collected data while vehicle is in
hrs	double precision	motion. Does not include zero speed time.
111.5		Total number of hours which were not
non_recorded_time_hr		recorded by the device. Calculated as the
s	double precision	difference between the real time duration of
		the data and the collected data duration.
collected_vs_real_time		Ratio of collected sample duration to real
_ratio	double precision	time duration
mean_estimated_samp		Computed sampling rate based on average
ling_rate_hz	double precision	time gap observed between samples in
		collected data
max_gap_between_sa	double precision	Maximum time gap (in seconds) observed
mples_s	double precision	between samples in collected data
min_gap_between_sa	double precision	Minimum time gap (in seconds) observed
mples_s	double precision	between samples in collected data
mean_gap_between_sa	double precision	Average time gap (in seconds) observed
mples_s	double precision	between samples in collected data
median_gap_between_	double mucie!	Median time gap (in seconds) observed
samples_s	double precision	between samples in collected data
std_gap_between_sam	1 11	Standard deviation of time gaps between
ples_s	double precision	samples observed in collected data
var_gap_between_sam	double precision	Variance of time gaps observed in collected
ples_s		data
		Twenty Fifth percentile time gap (in seconds)
gap_25th_percentile_s	double precision	between samples observed in collected data

gap_75th_percentile_s	double precision	Seventy Fifth percentile time gap (in seconds) between samples observed in collected data
gap_inter_quartile_ran ge_s	double precision	Inter Quartile Range for distribution of time gaps between samples observed in collected data
gap_median_absolute_ deviation_s	double precision	Median Absolute Deviation for distribution of time gaps between samples observed in collected data
median_estimated_sa mpling_rate_hz	double precision	Estimated sampling rate based on median time gap observed between samples in collected data
max_speed	double precision	Maximum observed driving speed (in MPH)
total_average_speed	double precision	Average speed (in MPH) over cycle including zero speed components
total_median_speed	double precision	Median of all observed speed data (in MPH). Includes zero speed components.
total_root_mean_cube d_speed	double precision	Root mean cubed value of all observed speed data. Includes zero speed components.
total_speed_variance	double precision	Variance of all observed speed values. Includes zero speed components.
total_speed_standard_ deviation	double precision	Standard deviation of all observed speed values. Includes zero speed components.
total_speed_velocity_r atio	double precision	Total vehicle speed velocity ratio
total_speed_25th_perc entile	double precision	25th percentile value for speed distribution (in MPH). Includes zero speed components.
total_speed_75th_perc entile	double precision	75th percentile value for all observed speed points (in MPH). Includes zero speed components.
total_speed_inter_quar tile_range	double precision	Inter quartile range for distribution including all observed speed points. Includes zero speed components.
total_speed_median_a bsolute_deviation	double precision	Median absolute deviation of all observed speed values. Includes zero speed components.
driving_average_speed	double precision	Average driving speed over cycle (in MPH). Does not include any zero speed components.
driving_median_speed	double precision	Median driving speed over cycle (in MPH). Does not include any zero speed components.
driving_root_mean_cu bed_speed	double precision	The square root of the mean driving speed cubed
driving_speed_variance	double precision	Variance of observed driving speed. Does not include zero speed components.

driving_speed_standar d_deviation	double precision	Standard deviation of driving speed distribution. Does not include zero speed components.
driving_speed_velocity _ratio	double precision	Ratio of root mean cubed speed to mean total speed
driving_speed_25th_pe rcentile	double precision	The 25th percentile for driving speed distribution (in MPH). Does not include zero speed components.
driving_speed_75th_pe rcentile	double precision	75th percentile value for driving speed distribution (in MPH). Does not include zero speed components.
driving_speed_inter_qu artile_range	double precision	Inter quartile range of observed driving speed distribution. Does not include zero speed components.
driving_speed_median _absolute_deviation	double precision	Median absolute deviation of observed driving speeds. Does not include zero speed components.
zero_seconds	double precision	Number of seconds at zero speed
zero_five_seconds	double precision	Total time spent at speeds between zero and five miles per hour
five_ten_seconds	double precision	Total time observed at speeds between five and ten miles per hour
ten_fifteen_seconds	double precision	Number of seconds spent at speeds between ten and fifteen miles per hour
fifteen_twenty_second s	double precision	Total amount of time (in seconds) observed at speeds between fifteen and twenty miles per hour
twenty_twenty_five_se conds	double precision	Total time spent at speeds between twenty and twenty five miles per hour (in seconds)
twenty_five_thirty_sec onds	double precision	Total time spent at speeds between twenty five and thirty miles per hour (in seconds)
thirty_thirty_five_seco nds	double precision	Total time spent at speeds between thirty and thirty five miles per hour (in seconds)
thirty_five_fourty_seco nds	double precision	Total amount of time spent at speeds between thirty five and forty miles per hour (in seconds)
fourty_fourty_five_sec onds	double precision	Total amount of time at speeds between forty and forty five miles per hour (in seconds)
fourty_five_fifty_secon ds	double precision	Number of seconds spent between forty five and fifty miles per hour vehicle speed
fifty_fifty_five_seconds	double precision	Total amount of time observed at speeds between fifty and fifty five miles per hour (in seconds)
fifty_five_sixty_seconds	double precision	Total time spent at speeds between fifty five and sixty miles per hour (in seconds)

sixty_sixty_five_second s	double precision	Total amount of time spent at speeds between sixty and sixty five miles per hour (in seconds)
sixty_five_seventy_sec onds	double precision	Total amount of time observed at speeds between sixty five and seventy miles per hour (in seconds)
seventy_seventy_five_s econds	double precision	Total time observed at speeds between seventy and seventy five miles per hour (in seconds)
seventy_five_plus_seco nds	double precision	Total amount of time spent at speeds in excess of seventy five miles per hour (in seconds)
driving_time_seconds	double precision	Total time spent while vehicle is in motion (in seconds). Does not include zero speed time.
percent_zero	double precision	Percent of total time spent and zero speed
percent_zero_five	double precision	Percent of total time spent at speeds between zero and five miles per hour
percent_five_ten	double precision	Percent of total time spent at speeds between five and ten miles per hour
percent_ten_fifteen	double precision	Percent of total time spent at speeds between ten and fifteen miles per hour
percent_fifteen_twenty	double precision	Percent of total time spent at speeds between fifteen and twenty miles per hour
percent_twenty_twent y_five	double precision	Percent of total time spent at speeds between twenty and twenty five miles per hour
percent_twenty_five_t hirty	double precision	Percent of total time spent at speeds between thirty and thirty five miles per hour
percent_thirty_thirty_five	double precision	Percent of total time spent at speeds between thirty and thirty five miles per hour
percent_thirty_five_fourty	double precision	Percent of total time spent at speeds between thirty five and forty miles per hour
percent_fourty_fourty_ five	double precision	Percent of total time spent at speeds between forty and forty five miles per hour
percent_fourty_five_fif ty	double precision	Percent of time spent at speeds between forty five and fifty miles per hour
percent_fifty_fifty_five	double precision	Percent of total time spent at speeds between fifty and fifty five miles per hour
percent_fifty_five_sixty	double precision	Percent of time at speeds between fifty five and sixty miles per hour
percent_sixty_sixty_fiv e	double precision	Percent of total time spent at speeds between sixty and sixty five miles per hour
percent_sixty_five_sev enty	double precision	Percent of time at speeds between sixty five and seventy miles per hour

percent_seventy_seven ty_five	double precision	Percent of total time observed at speeds between seventy and seventy five miles per hour
percent_seventy_five_ plus	double precision	Percent of total time spent at speeds in excess of seventy five miles per hour
percent_distance_zero _five	double precision	Percent of total distance traveled at speeds between zero and five miles per hour
percent_distance_twen ty_twenty_five	double precision	Percent of total distance traveled at speeds between twenty and twenty five miles per hour
percent_distance_twen ty_five_thirty	double precision	Percent of total distance traveled at speeds between twenty five and thirty miles per hour
percent_distance_total	double precision	Total percentage of distance traveled at all speeds in cycle. Will always sum to 100%.
percent_distance_thirt y_thirty_five	double precision	Percent of distance traveled at speeds between thirty and thirty five miles per hour
percent_distance_thirt y_five_fourty	double precision	Percent of total miles traveled at speeds between thirty five and forty miles per hour
percent_distance_ten_f ifteen	double precision	Percent of total distance traveled at speeds between ten and fifteen miles per hour
percent_distance_sixty _sixty_five	double precision	Percent of total distance traveled at speeds between sixty and sixty five miles per hour
percent_distance_sixty _five_seventy	double precision	Percent of total distance traveled at speeds between sixty five and seventy miles per hour
percent_distance_seve nty_seventy_five	double precision	Percent of total distance traveled at speeds between seventy and seventy five miles per hour
percent_distance_seve nty_five_plus	double precision	Percent of total distance traveled at speeds in excess of seventy five miles per hour
percent_distance_fourt y_fourty_five	double precision	Percent of total distance traveled at speeds between fort and forty five miles per hour
percent_distance_fourt y_five_fifty	double precision	Percent of total distance traveled at speeds between forty five and fifty miles per hour
percent_distance_five_ ten	double precision	Percent of total distance traveled between five and ten miles per hour
percent_distance_fifty_ five_sixty	double precision	Percent of total distance traveled at speeds between fifty five and sixty miles per hour
percent_distance_fifty_ fifty_five	double precision	Percent of total distance traveled at speeds between fifty and fifty five miles per hour
percent_distance_fiftee n_twenty	double precision	Percent of total distance traveled at speeds between fifteen and twenty miles per hour

8

percent_total	double precision	Percent of time spent at all speeds in cycle. Will always add up to 100%.
distance_zero_five	double precision	Total distance traveled in miles at speeds between zero and five miles per hour
distance_five_ten	double precision	Total distance traveled in miles at speeds between five and ten miles per hour
distance_ten_fifteen	double precision	Total distance traveled in miles at speeds between ten and fifteen miles per hour
distance_fifteen_twent y	double precision	Total distance traveled in miles at speeds between fifteen and twenty miles per hour
distance_twenty_twent y_five	double precision	Total distance traveled in miles at speeds between twenty and twenty five miles per hour
distance_twenty_five_t hirty	double precision	Total distance traveled in miles at speeds between twenty five and thirty miles per hour
distance_thirty_thirty_f ive	double precision	Total number of miles traveled at speeds between thirty and thirty five miles per hour
distance_thirty_five_fo urty	double precision	Total distance traveled in miles at speeds between thirty five and forty miles per hour
distance_fourty_fourty _five	double precision	Total number of miles traveled at speeds between forty and forty five miles per hour
distance_fourty_five_fif ty	double precision	Total number of miles traveled between forty five and fifty miles per hour
distance_fifty_fifty_five	double precision	Total number of miles traveled between fifty and fifty five miles per hour
distance_fifty_five_sixt y	double precision	Total distance traveled in miles at speeds between fifty five and sixty miles per hour
distance_sixty_sixty_fiv e	double precision	Distance in miles traveled at speed from sixty to sixty five mph
distance_sixty_five_sev enty	double precision	Total number of miles traveled between sixty five and seventy miles per hour
distance_seventy_seve nty_five	double precision	Total distance traveled in miles as speeds between seventy and seventy five miles per hour
distance_seventy_five_ plus	double precision	Distance in miles traveled at speeds in excess of 75 mph
distance_total	double precision	Total distance traveled in miles
total_number_of_accel eration_events	double precision	Total number of observed acceleration events
total_number_of_decel eration_events	double precision	Total number of observed acceleration events
acceleration_events_pe r_mile	double precision	Number of acceleration events observed per mile of distance traveled

deceleration_events_p	double precision	Number of deceleration events observed per
er_mile		mile of distance traveled
max_acceleration_ft_p er_second_squared	double precision	Maximum acceleration rate in ft per second squared
max_deceleration_ft_p		Maximum deceleration in ft per second
er_second_squared	double precision	squared
average_acceleration_f	de libere estate e	Average acceleration rate in ft per second
t_per_second_squared	double precision	squared
average_deceleration_f	double precision	Average deceleration in ft per second squared
t_per_second_squared	double precision	Average deceleration in it per second squared
median_acceleration_ft	double precision	Median acceleration rate in ft per second
_per_second_squared	double precision	squared
median_deceleration_f		Median deceleration rate in ft per second
t_per_second_squared	double precision	squared
std_acceleration_ft_pe		Standard deviation of acceleration in ft per
r_second_squared	double precision	second squared
std_deceleration_ft_pe		Standard deviation of observed deceleration
r_second_squared	double precision	in ft per second squared
var_acceleration_ft_pe		Variance of observed acceleration rate
r_second_squared	double precision	distribution in ft per second squared
var_deceleration_ft_pe	double are sision	Variance of observed deceleration in ft per
r_second_squared	double precision	second squared
acceleration_25th_perc		
entile_ft_per_second_s	double precision	25th percentile for acceleration distribution. Value in ft per second squared
quared		
deceleration_25th_per		
centile_ft_per_second_	double precision	25th percentile value for deceleration rate
squared	·	distribution in ft per second squared
acceleration_75th_perc		75th percentile value for observed
entile_ft_per_second_s	double precision	acceleration rate distribution in ft per second
quared	,	squared
deceleration_75th_per		
centile_ft_per_second_	double precision	75th percentile value for deceleration rate in
squared	asable precision	ft per second squared
acceleration_inter_qua		
rtile_range_ft_per_sec	double precision	Inter quartile range of acceleration in ft per
ond_squared	aduble precision	second squared
deceleration_inter_qua		
	double presision	Inter quartile range for deceleration
rtile_range_ft_per_sec	double precision	distribution
ond_squared		

acceleration moddies a		
acceleration_median_a		
bsolute_deviation_ft_p	double precision	Median absolute deviation of acceleration
er_second_squared		
deceleration_median_a		Nanding about to decisting of decale action
bsolute_deviation_ft_p	double precision	Median absolute deviation of deceleration
er_second_squared		rate distribution in ft per second squared
cumulative_acceleratio		
n_duration	double precision	Total time spent accelerating (in seconds)
cumulative_deceleratio		
n_duration	double precision	Sum of time spent decelerating (in seconds)
cumulative_acceleratio		
n_cycle_duration_perc	double precision	Percent of total time spent accelerating
ent	addic precision	referre of total time spent decelerating
cumulative_deceleratio		
_	ala cola la mua aiai a ra	Domont of total time on ant decal anting
n_cycle_duration_perc	double precision	Percent of total time spent decelerating
ent		
absolute_time_cumulat		Sum of total time spent accelerating (in
ive_acceleration_durati	double precision	seconds)
on		333011837
absolute_time_cumulat		
ive_deceleration_durati	double precision	Sum of time spent decelerating (in seconds)
on		
absolute_time_cumulat		
ive_acceleration_cycle_	double precision	Percent of total time spent accelerating
duration_percent	·	
absolute_time_cumulat		
ive_deceleration_cycle	double precision	Percent of total time spent decelerating
_duration_percent	double precision	referre of total time spent decelerating
average_acceleration_e		Avance direction of phone and acceleration
vent_duration	double precision	Average duration of observed acceleration events (in seconds)
		·
average_deceleration_	double precision	Average duration of observed deceleration
event_duration		events (in seconds)
min_acceleration_even	double precision	Minimum duration observed for an
t_duration	- 333516 pt 65151611	acceleration event (in seconds)
min_deceleration_even	double precision	Minimum observed duration for deceleration
t_duration		event (in seconds)
max_acceleration_even	double our sisies	Maximum duration of observed acceleration
t_duration	double precision	events (in seconds)
max_deceleration_eve	double presision	Maximum duration of observed deceleration
nt_duration	double precision	events (in seconds)
i		1

11

tion (in seconds) on of deceleration event tion (in seconds) eration event durations
tion (in seconds)
eration event durations
eration event durations
eration event duration
of all observed acceleration
ls)
duration of deceleration
ls)
ile value for acceleration
in seconds)
ile value for deceleration
in seconds)
alue for acceleration event
tion (in seconds)
alue for deceleration event
tion (in seconds)
ge for acceleration event tion
uon
6 11 - 11 - 1
ge for distribution of nt durations
iit durations
deviation of acceleration
stribution
deviation of deceleration stribution
ואטנוטוו
ved stops
with dwell times between
econds
with dwell times between
econds
with dwell times in excess of
observed with dwell times in
onds
the state of the s

stops_1800_plus	double precision	Number of stops with durations in excess of
		30 minutes
stops_3600_plus	double precision	Number of stops with dwell times in excess of 3600 seconds
stops_per_mile	double precision	Number of observed stops per miles traveled
average_stop_duration	double precision	Average duration of all stops observed (in seconds)
min_stop_duration	double precision	Minimum stop dwell time observed (in seconds)
max_stop_duration	double precision	Maximum dwell time observed while stopped (in seconds)
median_stop_duration	double precision	Median dwell time of observed stops (in seconds)
mean_stop_duration	double precision	Mean observed stop dwell time (in seconds)
std_stop_duration	double precision	Standard deviation of stop dwell times (in seconds)
var_stop_duration	double precision	Variance of observed stop dwell times
stop_duration_25th_pe rcentile	double precision	25th percentile value for stop dwell time distribution (in seconds)
stop_duration_75th_pe rcentile	double precision	75th percentile value for stop dwell time distribution (in seconds)
stop_duration_inter_q uartile_range	double precision	Inter quartile range for stop duration distribution
stop_duration_median _absolute_deviation	double precision	Median absolute deviation of observed stop dwell times
max_elevation*	double precision	Maximum observed elevation (in feet)
min_elevation*	double precision	Minimum observed elevation (in feet)
mean_elevation*	double precision	Mean elevation observed (in feet)
median_elevation*	double precision	Median elevation observed (in feet)
std_of_elevation*	double precision	Standard deviation of elevation (in feet)
var_of_elevation*	double precision	Variance of elevation data records
elevation_25th_percen tile*	double precision	25th percentile value for elevation distribution (in feet)
elevation_75th_percen tile*	double precision	75th percentile value for elevation distribution (in feet)
elevation_inter_quartil e_range*	double precision	Inter quartile range for elevation distribution
elevation_median_abs olute_deviation*	double precision	Median absolute deviation of elevation distribution
delta_elevation*	double precision	Net elevation change observed (in feet). Calculated as final elevation record minus initial elevation record.

delta_elevation_cumul ative*	double precision	Net total elevation change (in feet). Sum of all elevation change records.
absolute_delta_elevati on_cumulative*	double precision	Cumulative absolute change in elevation (in feet). Sum of absolute value of differential elevation changes observed.
total_elevation_gained *	double precision	Sum of total elevation gained (in feet)
total_elevation_lost*	double precision	Sum of elevation lost (in feet)
average_absolute_elev ation_rate_change*	double precision	Average rate of elevation change regardless of sign (in ft/s)
max_climbing_rate*	double precision	Maximum observed climbing rate (in ft/s)
average_climbing_rate *	double precision	Average climbing rate of vehicle (in ft/s)
median_climbing_rate*	double precision	Median observed climbing rate (in ft/s)
max_descending_rate*	double precision	Maximum observed descending rate (in ft/s)
average_descending_ra te*	double precision	Average observed descending rate (in ft/s)
median_descending_ra te*	double precision	Median descending rate observed (in ft/s)
climbing_rate_25th_pe rcentile*	double precision	25th percentile value for observed climbing rate distribution (in ft/s)
descending_rate_25th_ percentile*	double precision	25th percentile value for descending rate distribution (in ft/s)
climbing_rate_75th_pe rcentile*	double precision	75th percentile value for climbing rate distribution (in ft/s)
descending_rate_75th_ percentile*	double precision	75th percentile value for descending rate distribution (in ft/s)
climbing_rate_inter_qu artile_range*	double precision	Inter quartile range for climbing rate distribution
descending_rate_inter_ quartile_range*	double precision	Inter quartile range for descending vehicle rate
climbing_rate_median_ absolute_deviation*	double precision	Median absolute deviation of vehicle climbing rate
descending_rate_medi an_absolute_deviation *	double precision	Median absolute deviation of descending rate distribution
max_road_grade*	double precision	Maximum observed road grade
min_road_grade*	double precision	Minimum road grade observed
mean_road_grade*	double precision	Mean observed road grade
median_road_grade*	double precision	Median observed road grade
std_of_road_grade*	double precision	Standard deviation of observed road grade

var_of_road_grade*	double precision	Variance of road grade observed
road_grade_25th_perc entile*	double precision	25th percentile value for road grade distribution
road_grade_75th_perc entile*	double precision	75th percentile value for observed road grade distribution
road_grade_inter_quar tile_range*	double precision	Inter quartile range for observed road grade distribution
road_grade_median_a bsolute_deviation*	double precision	Median absolute deviation for road grade distribution
maximum_kinetic_pow er_density_demand	double precision	Maximum demanded kinetic power density (in W/kg)
total_kinetic_power_de nsity_demand	double precision	Sum of demanded kinetic power density (in W/kg)
average_kinetic_power _density_demand	double precision	Average demanded kinetic power density (in W/kg)
variance_kinetic_powe r_density_demand	double precision	Variance of kinetic power density demanded
standard_deivation_kin etic_power_density_de mand	double precision	Standard deviation of demanded kinetic power density (in W/kg)
maximum_kinetic_pow er_density_regen	double precision	The maximum single sample regenerative kinetic power density (in W/kg)
total_kinetic_power_de nsity_regen	double precision	The sum of regenerative kinetic power density observed (in W/kg)
average_kinetic_power _density_regen	double precision	Average regenerative kinetic power density (in W/kg)
variance_kinetic_powe r_density_regen	double precision	Variance of regenerative kinetic power density (in W/kg)
standard_deivation_kin etic_power_density_re gen	double precision	Standard deviation of regenerative kinetic power density (in W/kg)
maximum_potential_p ower_density_demand	double precision	Maximum demanded potential power density (in W/kg)
total_potential_power_ density_demand	double precision	The sum of demanded potential power density (in W/kg)
average_potential_pow er_density_demand	double precision	Average demanded potential power density (in W/kg)
variance_potential_po wer_density_demand	double precision	Variance of demanded potential power density

standard dojuation no		
standard_deivation_po		Standard Deviation of the demanded
tential_power_density_	double precision	potential power density (in W/kg)
demand		
maximum_potential_p	double precision	Maximum regenerative potential power
ower_density_regen		density (in W/kg)
total_potential_power_	double precision	Sum of regenerative potential power density
density_regen	double precision	(in W/kg)
average_potential_pow	double precision	Average regenerative potential power density
er_density_regen	double precision	(in W/kg)
variance_potential_po		Variance of observed regenerative potential
wer_density_regen	double precision	power density
standard_deivation_po		
tential_power_density_	double precision	Standard deviation of regenerative potential
regen	acable presision	power density (in W/kg)
maximum_aerodynami		
c_power_density_dem	double precision	Maximum demanded aerodynamic power
and	double precision	density (in W/kg)
total_aerodynamic_po	double precision	The sum of demanded aerodynamic power
wer_density_demand	-	density (in W/kg)
average_aerodynamic_		Average demanded aerodynamic power
power_density_deman	double precision	density (in W/kg)
d		, , , , ,
variance_aerodynamic_		Variance of demanded aerodynamic power
power_density_deman	double precision	density
d		density
standard_deivation_aer		
odynamic_power_dens	double precision	Standard deviation of demanded
ity_demand		aerodynamic power density (in W/kg)
maximum_aerodynami		
c_power_density_rege	double precision	Maximum regenerative aerodynamic power
n	•	density (in W/kg)
total_aerodynamic_po		Sum of regenerative aerodynamic power
wer_density_regen	double precision	density (in W/kg)
average_aerodynamic_		Average regenerative power density from
power_density_regen	double precision	aerodynamics (in W/kg)
variance_aerodynamic_		
power_density_regen	double precision	Variance of regenerative aerodynamic power density
		density
standard_deivation_aer		Standard deviation of regenerative
odynamic_power_dens	double precision	aerodynamic power density (in W/kg)
ity_regen		

maximum_rolling_pow er_density_demand	double precision	Maximum demanded rolling power density (in W/kg)
total_rolling_power_de nsity_demand	double precision	The sum of demanded rolling power density (in W/kg)
average_rolling_power _density_demand	double precision	Average demanded rolling power density (in W/kg)
variance_rolling_power _density_demand	double precision	Variance of demanded rolling power density
standard_deivation_rol ling_power_density_de mand	double precision	Standard deviation of power density demand from rolling resistance (in W/kg)
maximum_rolling_pow er_density_regen	double precision	Maximum regenerative rolling power density (in W/kg)
total_rolling_power_de nsity_regen	double precision	Sum of regenerative rolling power density (in W/kg)
average_rolling_power _density_regen	double precision	Average regenerative rolling power density (in W/kg)
variance_rolling_power _density_regen	double precision	Variance of regenerative rolling power density
standard_deivation_rol ling_power_density_re gen	double precision	Standard deviation of regenerative rolling power density (in W/kg)
maximum_instantante ous_potential_energy_ density	double precision	Maximum potential energy density (in J/kg)
average_instantanteou s_potential_energy_de nsity	double precision	Average potential energy density (in J/kg)
cumulative_instanteou s_potential_energy_de nsity	double precision	Sum of potential energy density (in J/kg)
maximum_instantante ous_kinetic_energy_de nsity	double precision	Maximum single sample kinetic energy density (in J/kg)
average_instantanteou s_kinetic_energy_densi ty	double precision	Average kinetic energy density (in J/kg)
cumulative_instanteou s_kinetic_energy_densi ty	double precision	Sum of kinetic energy density (in J/kg)

maximum_instantante		
ous_aerodynamic_ener	double presiden	The maximum single sample aerodynamic
	double precision	energy density (in J/kg)
gy_density		
average_instantanteou		Average single sample aerodynamic energy
s_aerodynamic_energy	double precision	density (in J/kg)
_density		
cumulative_instanteou		
s_aerodynamic_energy	double precision	Sum of aerodynamic energy density (in J/kg)
_density		
maximum_instantante		
ous_rolling_energy_de	double precision	Maximum rolling energy density (in J/kg)
nsity		
average_instantanteou		
s_rolling_energy_densi	double precision	Average rolling energy density (in J/kg)
ty	·	
cumulative_instanteou		
s_rolling_energy_densi	double precision	Sum of rolling energy density (in J/kg)
ty	·	
characteristic_accelerat		
ion	double precision	Characteristic Acceleration (in m/s^2)
characteristic_decelera	devilete vere eleiere	Characteristic Deceleration – Energy while
tion	double precision	decelerating (in m/s^2)
aerodynamic_speed	double precision	Aerodynamic Speed (in m/s)
kinetic_intensity	double precision	Kinetic Intensity (1/km)
ca_standard	double precision	Characteristic Acceleration reported in
		standard units (in ft/s^2)
cd_standard	double precision	Characteristic Deceleration reported in
		standard units (in ft/s^2)
as_standard	double precision	Aerodynamic Speed reported in standard units (in ft/s)
ki_standard	double precision	Kinetic Intensity reported in standard units
		(1/mile)

Click the "[-]" to hide detail.

^{*} Indicates that the column has been redacted from cleansed datasets available at www.nrel.gov/tsdc. It has been determined that the column contains sensitive data that must be viewed within the TSDC's secure portal environment.