CAEBAT: Computer-Aided Engineering for Electric-Drive Vehicle Batteries

CAEBAT logo

NREL's work on the U.S. Department of Energy Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) project is accelerating the development and lowering the cost of high-performance lithium-ion (Li-ion) batteries for next-generation electric-drive vehicles (EDVs).

CAEBAT engineering tools are helping battery designers, developers, and manufacturers create the advanced battery technologies needed to boost EDV performance and consumer appeal and ultimately reduce petroleum consumption and emissions. NREL has collaborated with industry, university, and laboratory partners to develop these breakthroughs in computer-aided engineering across three phases of the CAEBAT project.

NREL's CAEBAT work has been divided into three phases: CAEBAT-1, CAEBAT-2, and CAEBAT-3. For CAEBAT-1, three teams created software tools for battery pack design, some of which were based on NREL's multiscale, multidomain (MSMD) model. Under CAEBAT-2, the teams worked to optimize MSMD speed and explored the use of CAEBAT to improve battery safety. Now underway, CAEBAT-3 activities focus on software integration and microstructure applications.

Learn more about CAEBAT:  

MSMD model (CAEBAT-1)

Software tools for battery cells and packs (CAEBAT-1)

Safety and crush simulation (CAEBAT-2)

Microstructure applications for battery cells and packs (CAEBAT-3)

Partners and the CAEBAT Consortium (CAEBAT-1, CAEBAT-2, and CAEBAT-3).

Publications

The following publications document CAEBAT project activities. For more publications related to battery development and energy storage systems for EDVs, see NREL's publications database.

Also see CAEBAT partner publications.

S. Santhanagopalan, C. Zhang, M. A Sprague, A. Pesaran, "A Representative-Sandwich Model for Simultaneously Coupled Mechanical-Electrical-Thermal Simulation of Lithium-Ion Battery Cell under Quasi-Static Indentation Tests," J. Power Sources, Submitted.

J. Marcicki, X.G.Yang, and P. Rairigh, "Fault Current Measurements During Crush Testing of Electrically Parallel Lithium-Ion Battery Modules," ECS Letters, Submitted.

C. Zhang, S. Santhanagopalan, M. A Sprague, A. Pesaran, "Coupled Mechanical-Electrical-Thermal Modeling for Short-Circuit Prediction in a Lithium-Ion Cell under Mechanical Abuse," J. Power Sources, 290, p. 102-113 (2015). http://dx.doi.org/10.1016/j.jpowsour.2015.04.162

S. Santhanagopalan, C. Zhang, A. Pesaran, E. Sahraei, Tomasz Wierzbicki, "Electrochemical-Thermal Behavior of Lithium-Ion Cells Subjected to Mechanical Crush." Presented at the AABC in Detroit MI (2015).

A. Pesaran, G.H. Kim, S. Santhanagopalan, "Coupled Mechanical-Electrochemical-Thermal Modeling For Accelerated Design of EV Batteries," 28th Electric Vehicle Symposium, Kintex, Korea (2015). https://www.nrel.gov/docs/fy15osti/63701.pdf

M. Jun, K. Smith, P. Graf, "State-Space Representation of Li-Ion Battery Porous Electrode Impedance Model with Balanced Model Order Reduction," J. Power Sources, 273(1), p.1226-1236 (2015). http://dx.doi.org/10.1016/j.jpowsour.2014.02.063

C. Zhang, S. Santhanagopalan, M.A. Sprague, A. A. Pesaran, "Short-Circuit Simulation of Lithium-Ion Battery," 13th US National Congress on Computational Mechanics, San Diego, CA (2015).

G.H. Kim, C. Yang, K. Smith, A. Pesaran, "Integrated Multiscale Multiphysics Modeling of Safety Response in Lithium-Ion Batteries." Presented at the AABC in Detroit, MI (2015).

A. Pesaran, T. Wierzbicki and E. Sahraei, S. Dajka and G. Li, S. Santhanagopalan, C. Zhang, G.H. Kim, M.A. Sprague, "Coupling Mechanical with Electrochemical-Thermal Models for Batteries under Abuse." Presented at the 2015 DOE Annual Merit Review, Washington, D.C. (2015).

G.H. Kim, A. Pesaran, K. Smith, P. Graf, M. Jun, C. Yang, G. Li, S. Li, A. Hochman, D. Tselepidakis, "Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering." Presented at the 2015 DOE Annual Merit Review, Washington D.C. (2015).

S. Santhanagopalan, C. Zhang, M.A. Sprague, A. Pesaran, Jim Marcicki, P. Rairigh, X.G.Yang, Alex Bartlett, "Crash Propagation in Automotive Batteries: Simulations and Validation." Presented at the 2015 DOE Annual Merit Review, Washington D.C. (2015).

P. Barai, K. Smith, C.-F. Chen, G.-H. Kim, P.P. Mukherjee. (2014). "Reduced Order Modeling of Mechanical Degradation Induced Performance Decay in Lithium-Ion Battery Porous Electrodes," J. Electrochem. Soc. 162 (9) A1751-A1771, http://dx.doi.org/10.1149/2.0241509jes.

D.R. Diercks, M. Musselman, A. Morgenstern, T. Wilson, M. Kumar, K. Smith, M. Kawase, B.P. Gorman, M. Eberhart, C.E. Packard, "Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical Heterogeneity in Cycled LiCoO2," J. Electrochem. Soc., 161(11): F3039-F3045; doi:10.1149/2.0071411jes (2014). http://dx.doi.org/10.1149/2.0071411jes

K. An, P.Barai, K. Smith, P.P. Mukherjee, "Probing the Thermal Implications in Mechanical Degradation of Lithium-Ion Battery Electrodes," J. Electrochem. Soc., 161(6): A1058-A1070, (2014). http://dx.doi.org/10.1149/2.069406jes.

C. Yang, G.H. Kim, S. Santhanagopalan, A. Pesaran, "Multi-Physics Modeling of Thermal Runaway Propagation in a Li-Ion Battery Module." Presented at the 225th ECS Meeting, Orlando, FL. (2014).

Multi-physics Modeling for Improving Li-Ion Battery Safety. Pesaran, A.; Kim, G.-H.; Santhanagopalan, S.; Yang, C. (2015).

Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering . Kim, G.; Pesaran, A.; Smith, K.; Graf, P.; Jun, M.; Yang, C.; Li, G.; Li, S.; Hochman, A.; Tselepidakis, D.; White, J. (2014).

Three Dimensional Thermal-, Electrical-, and Electrochemical-Coupled Model for Cylindrical Wound Large Format Lithium-ion Batteries. Lee, K. J.; Smith, K.; Pesaran, A.; Kim, G. H. (2013).

Three-Dimensional Multi-Physics Model for a Li-Ion Battery. Guo, M.; Kim, G. H.; White, R. E. (2013).

Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT). Pesaran, A. (2013).

Multi-Scale Multi-Physics Lithium-Ion Battery Model with Multi-Domain Modular Framework. (Preprint). Kim, G. H. (2013) NREL Report CP-5400-60847.

Battery Capacity Estimation of Low-Earth Orbit Satellite Application. Jun, M.; Smith, K.; Wood, E.; Smart, M. C. (2012).

Accelerating Electric Vehicle Battery Innovation with Multiphysics Simulation. Pesaran, A.; Kim, G.-H.; Smith, K.; Santhanagopalan, S. (2012).

Accelerating Development of EV Batteries Through Computer-Aided Engineering. Han, T. (General Motors Research and Development Center); Kim, G-H. (NREL); Collins, L. (ANSYS Inc.) (2012).

Overview of Computer-Aided Engineering of Batteries and Introduction to Multi-Scale, Multi-Dimensional Modeling of Li-Ion Batteries. Pesaran, A.; Kim, G.-H.; Smith, K.; Santhanagopalan, S.; Lee. K.-J. (2012).

Computer-Aided Engineering of Batteries for Designing Better Li-Ion Batteries. Pesaran, A.; Kim, G.-H.; Smith, K.; Lee, K.-J.; Santhanagopalan, S. (2012).

Modeling Detailed Chemistry and Transport for Solid Electrolyte Interface (SEI) Films in Li-ion Batteries. Colclasure, A. M.; Smith, K. A.; Kee, R. J. (2011).

Computer-Aided Optimization of Macroscopic Design Factors for Lithium-Ion Cell Performance and Life. Smith, K.; Kim, G.-H.; Pesaran, A. (2010).

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT). Pesaran, A.; Kim, G.-H.; Smith, K.; Santhanagopalan, S.; Lee. K.-J. (2011).

A Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries. Lee, K.-J.; Smith, K.; Kim, G.-H. (2011).

Integrated Lithium-Ion Battery Model Encompassing Multi-Physics in Varied Scales: An Integrated Computer Simulation Tool for Design and Development of EDV Batteries. Kim, G.-H.; Smith, K.; Lee, K.-J.; Santhanagopalan, S.; Pesaran, A. (2011).

Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales. Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.; Pesaran, A. (2011).

Accelerating Design of Batteries Using Computer-Aided Engineering Tools. Pesaran, A.; Kim, G.-H.; Smith, K. (2010).

3D Thermal and Electrochemical Model for Spirally Wound Large Format Lithium-ion Batteries. Lee, K. J.; Kim, G. H.; Smith, K. (2010).

Computer-Aided Engineering Automotive Batteries. Pesaran, A.; Kim, G.-H.; Smith, K.; Neubauer. J. (2010).

Contact

Kandler Smith

Kandler.Smith@nrel.gov
303-275-4423