Thermal Management of Power Electronics
Task at NREL

- **Goals**
 - Develop means to improve heat rejection from power electronics > 250 W/cm²
 - Reducing system cost, increasing reliability, specific power, power density, and efficiency

- **Objectives for FY04**
 - Develop and demonstrate the viability and advantages of two-phase cooling techniques such as spray cooling, and Jet impingement

- **Deliverable for FY04**
 - Technical report on viability of spray-cooling and jet impingement for high heat flux heat removal
Thermal Management of Power Electronics
Task at NREL

- **Task Description: 2-phase heat management**
 - Investigation of spray cooling fluid dynamics: droplet size and pattern, orientation, surface treatment, spray behavior in critical system pressure, heat load, and vibration ranges.
 - Investigation of jet impingement fluid dynamics: Jet nozzle design, orientation, surface treatment, jet behavior in critical system pressure, heat load, and vibration ranges.
 - Surface preparation studies
Thermal Management of Power Electronics
Task at NREL

High Heat Flux Thermal Management Techniques

- Pool Boiling/Thermosyphons (30-70 W/cm²)
- 2-phase Microchannel/Minichannel Cooling (100-250 W/cm²)
- Jet Impingement Cooling (70-110 W/cm²)
- Spray Cooling (80-120 W/cm²)
- Surface Enhancement
- Choice of Coolants
Thermal Management of Power Electronics
Task at NREL

- **Pool Boiling**
 - Coolant that boils 10 to 40°C below the operating temp.
 - 30-70 W/cm²
- Governing Parameters
 - Surface Enhancement
 - Surface Orientation
 - Nucleation Sites
 - Fluid Properties

![Pool boiling curves for a 12.7-mm heated disc in saturated FC-72 at different surface orientations (adapted from [18]).](image)
Thermal Management of Power Electronics Task at NREL

- 2-Phase Microchannel/Minichannel Cooling
 - Require minimal coolant flow rates
 - Flow channels with dimensions ranging from hundreds of microns to few millimeters
 - 100-250 W/cm²
 - Governing Parameters
 - Microfabrication methods
 - Pressure drop
 - Choice of hydraulic diameter
 - Fluid Properties

Fig. 18. Comparison of microchannel and minichannel heat sink characteristics relative to (a) cooling performance and (b) pressure drop (adapted from 1)
Thermal Management of Power Electronics Task at NREL

Jet Impingement Cooling
- Free jet (vapor or gaseous environment)
- Submerged jet (liquid jet in liquid environment)
- Confined jet (liquid jet confined between the nozzle and target)
- Aggressive form of cooling (large impact momentum)
- 70-110 W/cm²

Governing Parameters
- Jet velocity
- Jet diameter
- Subcooling of working fluid
- Fluid Properties

Fig. 21. Free circular jet boiling curves for different flow rates (adapted from [67]).
Spray Cooling

- Water or FCs
- 80-120 W/cm²
- Governing Parameters
 - Droplet Diameter
 - Surface Orientation
 - Surface Texture
 - Fluid Properties
Thermal Management of Power Electronics Task at NREL

- Surface Modification Investigations
 - Grooved Surface Configurations
 - Dimpled Surface Configurations
 - Patterned Structure Configurations
- Spray Orientation Effects on Modified Surfaces
- Generally Focus on Thermal Effects On Underside of Die/Substrate
Thermal Management of Power Electronics
Task at NREL

- FC-72 used in initial modeling
- Mass flow rate 0.0084 kg/s
- Chip surface area 161 mm²
- Conditions match those in the literature
- Heat transfer now through droplet impingement, evaporation to be incorporated
Thermal Management of Power Electronics Task at NREL

- Chip surface
- FC-72 spray
- Plain spray nozzle

Velocity magnitude (m/s)
Thermal Management of Power Electronics
Task at NREL

FC-72 spray

Wall jet

Mounting plane

30° segment of chip

Contours of celsius (Time=3.5140e-02)

Feb 12, 2004

FLUENT 6.1 (3d, segregated, spe2, rke, unsteady)
Thermal Management of Power Electronics
Task at NREL

Nonuniformities in spray pattern, interaction with wall jet lead to temperature variation.

Chip edge

Chip center
Thermal Management of Power Electronics Task at NREL
Thermal Management of Power Electronics Task at NREL
Thermal Management of Power Electronics Task at NREL

- NREL’s Experimental Capability
 - Spray and jet impingement cooling testing capability, localized heat source and total inverter box
 - High speed camera for flow visualization
 - Infrared camera for temperature distribution