Need for, and Potential of, a Comprehensive Freight De-Carbonization Program

José Holguín-Veras,

William H. Hart Professor

Director of the Center for Infrastructure, Transportation, and the Environment, and the VREF Center of Excellence for Sustainable Urban Freight Systems jhv@rpi.edu

Collective Action Problem

The problem created by disincentives that tend to discourage joint action by individuals (or agents) in the pursuit of a common goal

Implication

Collection Action Problems cannot be solved by Magic Bullets (not even electrification) ... <u>or any other single action</u>

Who Generate Freight Externalities? What a Silly Question..!

3

Non-Carrier-Agents (NCAs) Contributions to Freight Externalities

Strategy Framework and Suggested Actions

	Short-term	Medium-term	Long-term
Metro Areas	Demand Management: Off-Hour Deliveries Staggered Deliveries Change in Vehicle Choice, Change Ordering Patterns, etc. Slow deliveries	<u>Vehicle Related Initiatives:</u> Electric Trucks, Connected Trucks <u>Freight Efficient Land Uses</u> <u>Demand Management</u>	<u>Freight Efficient Land Uses</u> <u>Vehicle Related Initiatives</u> : Electric Trucks, Connected Trucks <u>Demand Management</u>
Intercity Freight	Demand Management: Changes in Vehicle/Mode Choice Staggered Deliveries at LTGs Slow deliveries, etc. Vehicle Related Initiatives: Manage truck over-supply Study truck size/weights regs	<u>Vehicle Related Initiatives:</u> Electric Trucks, Connected Trucks <u>Demand Management</u> : Change in Vehicle/Mode Choice	<u>Freight Efficient Land Uses</u> <u>Vehicle Related Initiatives</u> Electric Trucks, Connected Trucks <u>Demand Management</u>

Freight Demand Management: Retiming of Freight Activity

Off-Hour Deliveries: NYC CO₂ Emissions: Day vs. Night Deliveries¹⁵

Partial OHD (6PM to 10PM)										
						-				
City∖ Pollutant	ROG	TOG	СО	CO2	NOX	PM10	PM25			
Bogotá	13.49%	13.49%	13.50%	13.12%	12.70%	13.41%	13.41%			
New York City	67.17%	67.17%	67.00%	55.14%	59.47%	65.53%	65.53%			
Sao Paulo	49.98%	49.98%	51.43%	42.52%	44.64%	45.90%	45.90%			

In addition, cost reductions in the range of 30-55%

101111ent 2010 Vol. 01 Issue 1 Pages 04-105

Emissions by Time of Day: NY-NJ Port Complex

	Arrival Time	Elizabeth NI	Newark NJ	Bayonne	Carteret NI	I-280	West of Hudson	I-287	East of Hudson	I-78	I-95 South	NY North	Average
	Midnight	145	-22%		-30%		maason		maason	-24%	-11%		-74%
	1AM		-30%		5070				-30%	-28%	11/0		-28%
	2AM	-39%	-23%		-29%			-25%	-30%	-33%	-9%		-27%
	3AM		-20%	1	-32%		-21%			-25%	-12%		-25%
	4AM		-10%		-31%					-160/	-7%	0%	-22%
	5AM	0%	19%		-18%					-25%	-10%		-13%
	6AM	-20%	-6%		12%		-100/			-26%	-8%		-5%
5	7AM	-18%	-13%	σ%	-9%	24%	-24%	-18%	-20%	-26%	-9%		-1%
or	8AM	-16%	-19%	_/10/	0%		-20%	-18%	-14%	-26%	-6%	-5%	-5%
Í	9AM	-22%	20%	-5%	-14%		-16%	-17%	-19%	-21%	-5%	-9%	-13%
	AU/AIM	-31%	-18%	-11%	-9%	-9%	-21%	-19%	-15%	-16%	-4%	-7%	-12%
"Optimal"	11AM	-37%	-15%	-24%	-11%	-17%	-25%	-12%	-25%	-22%	-5%	-6%	-11%
time periods	Noon	-29%	-16%	-19%	-6%		-26%	-12%	-27%	-24%	-1%	-4%	-7%
	1PM	-31%	-23%	-5%	-16%	-16%	-24%	-14%	-16%	-23%	-5%	0%	-9%
	2PM	-36%	-20%	-14%	-17%		-21%	-18%	-14%	-23%	-4%	-4%	-12%
E T	3PM	-34%	-10%	17%	-17%	-17%	-15%	-16%	-14%	-21%	-1%	-3%	-6%
P	1PM	-33%	0%	-5%	-1-7/	0%	0%	0%		-20%	-4%		-7%
L.	5PM	-31%	-18%	-13%	-21%	-10%		-15%	0%	-17%	-11%		-9%
Staggoring	6PM	-29%	0%		-21%		-6%		-11%	0%	0%		0%
Staggering	7PM	-22%	-18%		-25%					-22%	-10%		-17%
deliveries reduces	8PM	-21%	-25%		-31%					-21%	-3%		-16%
CO2 by 5% to 31%	9PM		-33%		-27%	-21%	-29%		-21%	-30%	-7%		-27%
	10PM		-17%		-17%	-11%		-25%	-22%	-31%	-8%	>	-24%
	S. PM	-50%	-38%								-6%		-28%
1824	Average	-31%	-17%	-14%	-12%	-14%	-21%	-15%	-18%	-22%	-5%	-5%	-10%

Freight-Efficient Land Uses: Concept and Principles

National Cooperative Highway Research Program

Planning Freight-Efficient Land Uses

METHODOLOGY, STRATEGIES, AND TOOLS

Just Released!

NATIONAL ACADEMIES

TTREE TRANSPORTATION RESEARCH BOARD

Freight-Efficient Land Uses (FELU) Principles

- FELU principles provide guidance for action, to be adapted to the local conditions:
 - Minimize Social Costs, to reduce the private and external costs of supply chains and their stages;
 - Foster Compactness of Supply Chains, to reduce the distance traveled at supply chain stages, up and downstream;
 - Mitigate Supply Chain Externalities, to reduce or eliminate, the externalities at supply chain nodes and Large Traffic Generators (LTGs);
 - Seek Appropriate Solutions, that recognize and account for local conditions; and
 - *Engage Stakeholders*, to ensure their points of view and concerns are addressed.

Key Insight: Complex Problems Need Complex Solutions... There Is No Way Out

For a Deeper Lecture on this Subject, See: Fall 2021 Kent Seminar Series: José Holguín-Veras at the University of Illinois at Urbana-Champaign https://www.youtube.com/watch?v=EXkmXc5ed2I

Thanks! Questions?

José Holguín-Veras,

William H. Hart Professor Director of the VREF Center of Excellence for Sustainable Urban Freight Systems

jhv@rpi.edu

www.coe-sufs.org

