Natural Gas for Transportation

Research Needs Workshop
Kevin Stork, DOE
Gurpreet Singh, DOE
Mike Weissmiller, DOE
Mark Smith, DOE
July 25, 2017
Legislative and Policy Drivers – House

FY17 HEWD Mark Guidance

Within available funds, the recommendation includes up to $15,000,000 for medium and heavy-duty on-road natural gas engine research and development, including energy efficiency improvements, emission after-treatment technologies, fuel system enhancements, and new engine development. Additionally, the Department is encouraged to address technical barriers to the increased use of alternative fuel vehicles, including the development of novel compression and liquefaction technologies, advanced materials, and improvements in processes for conditioning and dispensing natural gas.

No guidance in FY17 Conference Report

FY18 HEWD Mark Guidance

Within available funds, the recommendation includes up to $15,000,000 for medium and heavy-duty on-road natural gas engine research and development, including energy efficiency improvements, emission after-treatment technologies, fuel system enhancements, and new engine development.
Legislative and Policy Drivers – Senate

FY17 SEWD includes no guidance

FY18 SEWD Mark Guidance

The Committee encourages the Department to support research on natural gas storage, natural gas engines, and fueling infrastructure optimization. The Committee is also supportive of efforts to address technical barriers to the increased use of natural gas vehicles, including the development of novel compression and liquefaction technologies, advanced materials, and improvements in processes for conditioning, storing, and dispensing natural gas.
Administration Guidance

“Focus on low-TRL”

• What’s that?

• TRL = Technology Readiness Level
 • Ranges from 1–10 (from basic science to product ready for the market)
 • “Low-TRL” = TRL 1–3
 • “EERE does not work on TRL 1” ← quote of unknown provenance (i.e., not Administration guidance)

• N.B.: the word “engineering” first shows-up in the definition of TRL 6
Workshop Objectives

What are we looking for today?

• Ideas that can lead to projects that will advance the science base underlying increased efficiency in natural gas engines and improved emissions control

What are we not looking for today?

• An additional engine product in the market
• Deployment activities

How do we plan to execute this activity?

• Multiple projects, balancing competitively-awarded, cost-shared cooperative agreements and projects at National Labs
New domestic NG proven reserves have increased exponentially in the past ten years and can be used to offset reliance on unstable oil sources.

By applying inexpensive domestic NG to vehicular transportation, reduction in the balance of trade and job creation can be envisioned along with long-term economic security.

The introduction of NG can be environmentally beneficial:
- Reduction in criteria emissions versus baseline fuel (i.e., gasoline for LD, diesel for HD)
- GHG neutral or result in slight reduction versus baseline fuel
2015 Sectoral Natural Gas Consumption
- Export
- Residential
- Commercial
- Industrial
- NG-to-Liquids Heat and Power
- NG to Liquids Production
- Electric Power
- Transportation
- Pipeline Fuel
- Lease and Plant Fuel
- Liquefaction for Export

2015 Sectoral Natural Gas Consumption
- Transportation (0.6%)
- Residential
- Commercial
- Electric Power
- Industrial
- Export

Natural Gas Consumption (Trillion CfT)
- 2015 Sectoral Natural Gas Consumption
- Domestic Consumption

Source: 2017 Annual Energy Outlook Reference Case, Table 13

2050 NG:
- Export: 5.5 quads
- Transportation NG: 0.5 quads
NG Share of Transportation Fuel Demand by Sector/Mode

<table>
<thead>
<tr>
<th>Sector/Mode</th>
<th>Fuel Type</th>
<th>2015</th>
<th>2040 AEO (ref)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-Duty Vehicle</td>
<td>NG</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Commercial Light Truck</td>
<td>NG</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Light Medium Freight Truck</td>
<td>NG</td>
<td>0.6%</td>
<td>2%</td>
</tr>
<tr>
<td>Medium Freight Truck</td>
<td>NG</td>
<td>0.8%</td>
<td>1%</td>
</tr>
<tr>
<td>Heavy Freight Truck</td>
<td>NG</td>
<td>0.4%</td>
<td>10%</td>
</tr>
<tr>
<td>Transit Bus</td>
<td>NG</td>
<td>18%</td>
<td>70%</td>
</tr>
<tr>
<td>Freight Rail</td>
<td>NG</td>
<td>0.0%</td>
<td>35%</td>
</tr>
<tr>
<td>Intercity Rail</td>
<td>NG</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Air Transportation</td>
<td>GTL Jet</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Heavy Freight Truck</td>
<td>GTL Diesel</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Total transportation sector energy demand (Quad Btu)</td>
<td></td>
<td>26.7</td>
<td>25.5</td>
</tr>
<tr>
<td>Total NG share of transportation sector energy demand</td>
<td></td>
<td>0.2%</td>
<td>3.4%</td>
</tr>
</tbody>
</table>
Opportunities to Address Barriers to Large-Scale Turnover to NG for LD & MD/HD

<table>
<thead>
<tr>
<th>Light Duty</th>
<th>Medium / Heavy Duty</th>
</tr>
</thead>
</table>
| • Conformable storage tanks
• Robust, low-cost home refueling | • Ultra-low / near-zero NOx engine + aftertreatment systems |
| | • High efficiency NG engine designs vs. baseline diesel |
| | • NG engine durability improvements (ignition systems) |
| | • Large-scale, fast full fill fueling infrastructure supporting Class 8 trucking |
| | • Renewable NG gas standards (affects efficiency and emissions) |
| • Adopt NG to direct injection gasoline engine base designs | • Full displacement range, sustainable critical mass market for engine options |
| | • Cost (tanks) |

• Cost (tanks)
• External fueling infrastructure

ARPA-E MOVE program
Major Studies Identify RD&D Advances Needed to Facilitate Efficient NG Use

- **Engine operations**
 - Direct-injection turbocharged CNG engines – downsized DI NG engines can approach torque output of diesel (NPC 2012)
 - Improved air handling, higher energy ignition (NRC 2013)
- **Aftertreatment (NRC 2013)**
 - Improved catalysts for oxidation and oxygen storage
 - Improved controls air/fuel ratio dithering, sensors
 - Crank case ventilation
- **On board fuel storage** – tradeoffs between storage volume, ease of packaging, mass, storage & dispensing pressures (NPC 2012)
- **HD cryogenic fuel handling** – static & dynamic seals, non-intrusive fuel level sensing, vapor pressure management (NPC 2012)
- **Common gas specifications for RNG (beyond pipeline specs)** – composition analysis & allowable levels of trace compounds (NPC 2012)
- **LCA of GHG emissions during LNG refueling & use (ExxonMobil 2010)**
 - LNG retail fueling & vehicle tank boil-off losses depends on fuel station utilization, station design, type of on-board fuel tank, vehicle utilization, etc.
Research Needs for Expanded NG Transportation Use

• Vehicle Research
 – Broader range of high efficiency NG engine technologies to cover wide variety of HD applications
 – NG technology development leveraging recent gasoline boosted direct injection engine improvements (+ higher compression ratio)
 – NGVs with fewer penalties (cost, cargo, performance, and maintenance vs. baseline; right sizing NG tanks for needed range)
 – Lean NG engine controls
 – Advanced ignition systems for NG engines
 – Aftertreatment tailored to NG applications
 – Advanced lubricants to improve NG engine efficiency, reliability, and durability
2014-present DAS-T Working Group: NG for Transportation

- **Leader:** Michael Wang (ANL); **Co-Leaders:** Brad Zigler (NREL) and Yarom Polsky (ORNL)

- **NG Distribution/Refueling:** Yarom Polsky (ORNL), Marianne Mintz (ANL), Amgad Elgowainy (ANL), Martin Sulic (SRNL)

- **Liquid Fuels and LNG:** Ted Krause (ANL), Yarom Polsky (ORNL), Michael McKellar (INL), Tom Brouns (PNNL), Bryan Morreale (NETL), Vince Battaglia (LBL)

- **Storage:** Don Anton (SRNL), David Gotthold (PNNL), DJ Liu (ANL), Michael Kass (ORNL), Salvador Aceves (LLNL)

- **Vehicle End Use:** Brad Zigler (NREL), Dawn Manley* (SNL), Thomas Wallner (ANL), Tom Brouns (PNNL), Michael Kass (ORNL), Salvador Aceves (LLNL), Peter Therkelsen (LBL), Vi Rapp (LBL)

- **Impact Assessment:** Michael Wang (ANL), Dawn Manley* (SNL), David Tamburello (SRNL), Michael McKellar (INL), Marc Fischer (LBL), Anand Gogal (LBL)

* Former National Lab staff