Significant Fuel Savings and Emission Reductions by Improving Vehicle Air Conditioning

John Rugh
National Renewable Energy Laboratory
Valerie Hovland
Mesoscopic Devices
Stephen O. Andersen
U.S. Environmental Protection Agency

15th Annual Earth Technologies Forum and Mobile Air Conditioning Summit
April 15, 2004
Outline

• Modeling approach
 • Thermal comfort-based AC fuel use prediction
 • Model updates

• Fuel saved for up to 30% drop in AC power (equal to a 43% increase in COP)
 • Per vehicle (cars, light trucks)
 • By climate
 • Total savings and CO₂ reductions across California, U.S., EU, and Japan

- 26 billion liters (7 billion gallons)
- 6.9 billion liters (1.8 billion gallons)
- 1.7 billion liters (0.5 billion gallons)
Predicting Fuel Used for AC

• Use Multiple Models/Inputs/Data Sets
 – Environmental Conditions (Temp, RH, W/m²)
 – Thermal Comfort Model
 – Vehicle Simulations (Fuel Economy Reduction with AC)
Model Updates

• Updates to U.S. study, Summer 2003
 – Mean Radiant Temperature varies with vehicle type (car, truck)
 • Therefore usage PPD varies with type
 – Thermal comfort: use one assumption for clothing and soak (MRT)
 – Include demisting
 – AC power consumption = f(type, compressor speed)
Environmental Conditions:
Phoenix, AZ: Temperature

Temperature, humidity, solar radiation
Mean Radiant Temperature Models

- MRT varies with vehicle type (car, truck)
- Vehicle data used to generate models

- Ford Crown Victoria
- Plymouth Breeze
- Jeep Grand Cherokee
- Ford Explorer (White)
- Ford Explorer (Black)
- Lincoln Navigator
- Dodge Grand Caravan
- Ward Atkinson – Phoenix 2002
- Bill Hill – GM Data

Models

\[
\text{MRT(car, time)} = 27^\circ C \times \frac{\text{Radiation}(t)}{1000\text{W/m}^2} + T_{\text{ambient}}(t)
\]

\[
\text{MRT(truck, time)} = 24^\circ C \times \frac{\text{Radiation}(t)}{1000\text{W/m}^2} + T_{\text{ambient}}(t)
\]
Mean Radiant Temperature by City

Mean Radiant Temperature (C) in Phoenix, AZ

Month
Jan
Feb
Mar
Apr
May
June
July
Aug
Sept
Oct
Nov
Dec

Time of Day
12-6am
6-9am
9am-1pm
1-4pm
4-7pm
7-10pm
10pm-12am

10
20
30
40
50
60
20
Thermal Comfort Model:
Percent of People Using AC

Thermal Comfort Model, \(PPD \) from \(PMV \)

<table>
<thead>
<tr>
<th>PMV</th>
<th>Thermal Sensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 3</td>
<td>Hot</td>
</tr>
<tr>
<td>+ 2</td>
<td>Warm</td>
</tr>
<tr>
<td>+ 1</td>
<td>Slightly Warm</td>
</tr>
<tr>
<td>0</td>
<td>Neutral</td>
</tr>
<tr>
<td>- 1</td>
<td>Slightly Cool</td>
</tr>
<tr>
<td>- 2</td>
<td>Cool</td>
</tr>
<tr>
<td>- 3</td>
<td>Cold</td>
</tr>
</tbody>
</table>
AC Usage for Cooling

Predicted Percent Dissatisfied (%) in Phoenix, AZ
Clothing: 0.6, Velocity: 0.1, MRT: Ambient+Rise

100% of People Have AC On

AC Off
AC Usage for Demisting

AC used for demist if:
Temperature is between 1.7-12.8°C (35-55°F), and Relative Humidity > 80%

Demist Percent Usage in Brussels, BEL

Month
Dec
Nov
Oct
Sept
Aug
July
June
May
Apr
Mar
Feb
Jan

No Demist Usage

100% Demist Usage

Time of Day
12-6am 6-9am 9am-1pm 1-4pm 4-7pm 7-10pm 10pm-12am
Vehicle Usage with Time of Day, Month

70% Daily Travel

Hour of the Day

Month of the Year

Average

Summer Months: May - September

Day

Month

70% Daily Travel

Hour of the Day

Month of the Year

Average

Summer Months: May - September
Percent of Time AC is On: Cooling + Demist

State A

Percent of Time AC for Cooling + Dehumidification

- 6.3 to 17.9
- 17.9 to 19.6
- 19.6 to 22.9
- 22.9 to 25.1
- 25.1 to 25.9
- 25.9 to 28.4
- 28.4 to 32.1
- 32.1 to 37.8
- 37.8 to 41.4
- 41.4 to 49.2
- 49.2 to 57.3
- 57.3 to 69.3

NREL National Renewable Energy Laboratory
Climate during AC Use

Temperature, Humidity

Average Temperature During AC Use (C)
- 16.9 to 22.8
- 22.8 to 23.5
- 23.5 to 24.1
- 24.1 to 24.6
- 24.6 to 24.9
- 24.9 to 25.1
- 25.1 to 25.5
- 25.5 to 26.2
- 26.2 to 26.7
- 26.7 to 26.7
- 26.7 to 27.3
- 27.3 to 30.2

U.S. Average: 25°C
Fuel Economy Impact: Vehicle Simulations

FTP drive cycle
- Hot initial conditions

ADVISOR 2002
- Advanced Vehicle Simulator

Table: Fuel Economy Impact

<table>
<thead>
<tr>
<th></th>
<th>US Car</th>
<th>US Truck</th>
<th>EU Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Economy no AC</td>
<td>22.0</td>
<td>18.8</td>
<td>30.4</td>
</tr>
<tr>
<td>Fuel Economy with AC</td>
<td>18.0</td>
<td>16.2</td>
<td>27.3</td>
</tr>
<tr>
<td>Fuel Economy defrost</td>
<td>21.1</td>
<td>18.1</td>
<td>29.0</td>
</tr>
</tbody>
</table>

Table: FE Drop with AC

<table>
<thead>
<tr>
<th></th>
<th>US Car</th>
<th>US Truck</th>
<th>EU Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE Drop with AC</td>
<td>18%</td>
<td>14%</td>
<td>10%</td>
</tr>
<tr>
<td>FE Drop with defrost</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
</tr>
</tbody>
</table>

US car and truck based on existing fleet
Distance Traveled per Year
EU and Japan

Sources:
• 2002 World Road Statistics from the International Road Federation
• International Road Traffic and Accident Database
• Ward’s Automotive Yearbook, 2001

U.S.:
• Car: 11,850 miles (19,070 km)
• Truck: 11,958 miles (19,244 km)
• 7.0 billion gallons used for air conditioning annually
• 5.5% total fuel consumption
• 62 billion kg CO₂
• 9.5% imported crude oil
Total Fuel Use for AC for Cooling and Demisting

<table>
<thead>
<tr>
<th></th>
<th>Totals Dehumid + Cooling</th>
<th>Billion Gallons</th>
<th>Billion Liters</th>
<th>Billion kg CO2</th>
<th>Percent of Total Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU</td>
<td>100% Market</td>
<td>1.8</td>
<td>6.9</td>
<td>16.0</td>
<td>3.2%</td>
</tr>
<tr>
<td>Japan</td>
<td>100% Market</td>
<td>0.45</td>
<td>1.7</td>
<td>4.0</td>
<td>3.5%</td>
</tr>
</tbody>
</table>
U.S. Fuel Saved & CO₂ Reduced by Reducing AC Consumption

AC Power Consumption: Percent of Baseline

Billion Gallons

Billion kg CO₂

65% 70% 75% 80% 85% 90% 95% 100% 105%

AC Consumption

AC Fuel Saved

CO₂ Reduced

Vs. Total Consump.
5.5%
3.6%
Fuel Saved per Vehicle by Climate

30% Reduction in AC Power

Gallons Saved /Vehicle/Year, 30% Reduction in AC Power

- Blue: 0.4 to 6.6
- Light Blue: 6.6 to 7.5
- Purple: 7.5 to 7.9
- Dark Purple: 7.9 to 8.7
- Light Red: 8.7 to 9.4
- Red: 9.4 to 10.1
- Dark Red: 10.1 to 11.9
- Maroon: 11.9 to 13.1
- Medium Maroon: 13.1 to 14.7
- Deep Maroon: 14.7 to 16.6
- Reddish Brown: 16.6 to 21.9
- Brown: 21.9 to 28.2
Per Vehicle Fuel Saved by Reducing AC Consumption

- Car: Baseline Use 33.7 gal/year
- Truck: Baseline Use 26.8 gal/year
- Average: Baseline Use 30.8 gal/year
U.S. Fuel Savings Taking into Account New Technology Penetration

- Assumptions
 - 15% and 30% reductions in AC power
 - Power reductions begin in 2010
 - Fleet grows through time (DOE’s Vision model)
 - 234 million in 2010
 - 293 million in 2050
 - Fleet turnover in 16 years
 - VMT increases over time
 - 13,500 miles in 2010
 - 19,950 miles in 2050
Per Vehicle Savings from an Improved MAC

Assumptions:
- 30% reduction in A/C energy
- 11 gallons of fuel per year saved
- One A/C service avoided in year 8
- Cost of service charge = $107
- Cost of fuel = 1.75 $/gal
- Costs rise at rate of inflation
EU Fuel Saved by Reducing AC Power Consumption

- EU AC Consumption
- EU AC Fuel Savings
- Bil kg CO2 Saved

AC Power Consumption: Percent of Baseline

Billion Gallons vs. Total Consump.

3.2%

EU AC Consumption

Billion kg CO2 Saved

65% 70% 75% 80% 85% 90% 95% 100% 105%
Japan Fuel Saved by Reducing AC Power Consumption

AC Power Consumption: Percent of Baseline

- 65%
- 70%
- 75%
- 80%
- 85%
- 90%
- 95%
- 100%
- 105%

Billion Gallons

- 0.14
- 0.11
- 0.09
- 0.07
- 0.05
- 0.02
- 0.005

Billion kg CO2

Vs. Total Consump.

- 3.4%

2.4%

AC Fuel Saved

- CO2 Reduced

Japan AC Consumption

Vs. Total Consump.
Conclusions

MAC fuel use & CO2 emissions are strong functions of:
- Vehicle design
- Vehicle use
- Environment

Solutions to reduce fuel consumed by MACs:
- Reduce the thermal load – improve vehicle design
- Improve delivery – design for occupant thermal comfort
- Improve equipment
- Educate consumers on impacts of driver behavior on MAC fuel use
Conclusions (cont.)

• Thermal comfort-based AC fuel use prediction

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>EU</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Fuel Use, Billion Gallons</td>
<td>7.0</td>
<td>1.82</td>
<td>0.45</td>
</tr>
<tr>
<td>AC Fuel Use, Percent of Total Consumption</td>
<td>5.5%</td>
<td>3.2%</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

• Reducing AC fuel use has the potential to greatly benefit the nation
 • Reduce imported oil
 • Reduce CO₂

• Per vehicle savings allow calculation of payback time

<table>
<thead>
<tr>
<th>30% Reduction in Power</th>
<th>Units</th>
<th>US</th>
<th>California</th>
<th>EU</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savings per Vehicle</td>
<td>gal/year</td>
<td>11.0</td>
<td>11.0</td>
<td>2.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Reference Total Consumption</td>
<td>gal/year</td>
<td>30.8</td>
<td>30.5</td>
<td>8.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Savings of Total Consumption</td>
<td>%</td>
<td>2.0%</td>
<td>-</td>
<td>1.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Fuel Saved</td>
<td>Bil Gallons</td>
<td>2.5</td>
<td>0.26</td>
<td>0.56</td>
<td>0.14</td>
</tr>
<tr>
<td>Fuel Saved</td>
<td>Bil Liters</td>
<td>9.5</td>
<td>1.0</td>
<td>2.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Emissions Reduced</td>
<td>Bil kG CO2</td>
<td>22.1</td>
<td>2.3</td>
<td>4.9</td>
<td>1.2</td>
</tr>
</tbody>
</table>

• Impact of incremental reduction in AC power: states, nations, world
Fuel Savings across the World

Billion Gallons: Savings with 30% Drop in AC Power

2.5

0.56

0.14
CO₂ Reduction across the World

Billion kg CO₂: Reduction with 30% Drop in AC Power
Thank you!

• John Rugh
 – Ph: 303-275-4413
 – Email: john_rugh@nrel.gov

• Valerie Hovland
 – Email: vhovland@mesoscopic.com

• Stephen Andersen
 – Ph: 202-343-9069
 – Email: andersen.stephen@epa.gov
Back Up
Why So Much Fuel for A/C?

Metabolic Heat Generation

150 Watts

A/C Cooling 3-6 kW$_{th}$!
Cities Used from TMY Data Base
Car & Truck MRT

- Plymouth Breeze
- July 12
- Golden, CO

- Jeep Grand Cherokee
- July 12
- Golden, CO

Temperature (C) vs. Time

- Trim
- Seat
- Air
- Glazing
- IP
- Headliner
- Ambient
- Model

Plymouth Breeze
July 12
Golden, CO
Vehicle Modeling in ADVISOR

- U.S. Car
 - 115 kW SI engine, 1300 kg
- U.S. Truck
 - 144 kW SI, 1924 kg
- EU Vehicle
 - 91 kW compression ignition diesel, 1220 kg
- Fuel economy expressed in gasoline equivalent fuel consumption
- \(\text{CO}_2 \) emissions determined from fuel consumption
 - 2.33 kg \(\text{CO}_2 \)/liter fuel
AC Modeling

- **HFC-134a**
 - U.S. trucks: 210 cc fixed
 - U.S. cars: 180 cc fixed
 - EU vehicle: 125 cc variable displacement
 - Compressor power consumption based on Delphi compressor curves
 - Total power = $P_{\text{compressor}} + P_{\text{blower}}$
 - $P_{\text{blower}} = 120$ W
 - Engine speed/compressor speed ratio = 0.64

Curves based on work by Forrest at Delphi

- Cooling mode: 27°C, 60% RH
- Demist mode: 16°C, 80% RH
Conservative Estimate of Fuel Used for AC

- Fanger’s thermal comfort model excludes:
 - Sun hitting a driver
 - Thermal asymmetry
 - Sitting on a hot seat
 - High humidity impacts
- Model excludes AC use due to
 - Automatic Temperature Control
- EU compressor power
Incremental Reduction in AC Power

- 85% of Baseline Power
- 70% of Baseline Power
EU/Japan Per Vehicle Fuel Saved by Reducing AC Consumption

Gallons Saved/Year/Vehicle

Liters Saved/Year/Vehicle

AC Power Consumption: Percent of Baseline

EU Baseline: 8.0 gallons
Japan Baseline: 7.2 gallons

NREL National Renewable Energy Laboratory