New Architecture Development & Market Barriers, New Technology Development, Hybridization, Market Barriers, etc.

INDUSTRY PERSEPECTIVE
INDUSTRY PERSPCETIVE

Gary Kassen
Engineering Director, Case New Holland
CNH Industrial Strategy and Fluid Power Needs

Gary Kassen, Engineering Director – Hydraulics/Pneumatics

Golden, CO
September 12, 2017

Contains confidential proprietary and trade secrets information of CNH Industrial. Any use of this work without express written consent is strictly prohibited.
CNH Industrial – 2016 Sales $23.7 B

-55% Off-Highway

Trucks
Buses and Coaches
Firefighting Equipment
Civil Protection and Defense Vehicles
Skid Steer Loaders
Crawler Excavators
Engines and Transmissions
Tractors
Combines
CNH INDUSTRIAL: A FIVE-TIME LEADER IN DOW JONES SUSTAINABILITY INDICES

<table>
<thead>
<tr>
<th>Year</th>
<th>CNH Industrial Score</th>
<th>Industry Average Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>81</td>
<td>49</td>
</tr>
<tr>
<td>2012</td>
<td>85</td>
<td>51</td>
</tr>
<tr>
<td>2013</td>
<td>88</td>
<td>49</td>
</tr>
<tr>
<td>2014</td>
<td>87</td>
<td>50</td>
</tr>
<tr>
<td>2015</td>
<td>91</td>
<td>52</td>
</tr>
<tr>
<td>2016</td>
<td>90</td>
<td>52</td>
</tr>
</tbody>
</table>
Megatrends & Related Material Topics

Material Topics relevant to Fluid Power

Source: CNH Industrial Sustainability Report, 2016
Innovation to Zero

- Defects - less warranty/service
- Leaks – No one quality problem with hydraulics
- Waste – Hydraulic oils (longer service life)
- Environmental Impact - Economical environmentally friendly fluids
CO2 & Other Air Emissions

- CO2 (Efficiency)
 - Limit or reduce system losses
 - Variable displacement pumps for cooling & lubrication circuits - provide flow on demand to these circuits
 - Lower engine speeds during roading or lower power operation (use larger displacements to maintain productivity)
 - Independent metering to reduce throttling losses.
 - Flatter oil viscosity curves

- Other Emissions
 - CNG
 - LP
 - Hydrogen

Fluid Power Challenge: Reduce space and higher efficiency to reach equivalent operating time
Methane Power Tractor

PERFORMANCE - TIER 4A T6.175 VS T6 METHANE POWER

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>T6.175 TIER 4A</th>
<th>T6 METHANE POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX POWER (kW)</td>
<td>129 @ 1800 RPM</td>
<td>132 @ 1800 RPM</td>
</tr>
<tr>
<td>MAX TORQUE (Nm)</td>
<td>726 @ 1500 RPM</td>
<td>740 @ 1500 RPM</td>
</tr>
</tbody>
</table>

Methane Tractor debut at 2017 Farm Progress Show

06 September 2017
Methane Advantages

- \(CO_2 \) [g/kWh]: Cursor 9 diesel vs. Cursor 9 NG, -14%
- PM [mg/kWh]: Euro VI limits vs. Cursor 9 diesel vs. Cursor 9 NG, -99%
- \(NO_x \) [g/kWh]: Euro VI limits vs. Cursor 9 diesel vs. Cursor 9 NG, -31%

Natural gas (fossil) CO\(_2\) -14%
Bio-methane CO\(_2\) -100%
ATS solution is simpler for CNG/LPG engines compared to diesel not requiring any SCR with related components (DEF tank, pipes and dosing module), resulting in ~90% smaller volume (ref. Tier4B).

Key Challenge is the extremely high exhaust gas temperatures of gas engines when compared with current diesel technology – 750/800 °C Vs. 550 °C.
Total Cost of Ownership – Commercial filling station

Methane

Fuel Price

-20 / 25%

From 1.2 to 1.4 €/kg

From 0.9 to 1.1 €/kg

+7%

Energy Value (Mj per kg)

44

48

-17%

Engine efficiency

100

83

Fuel cost (€/hrs) – Contractors operators (VAT excluded)

-15 / 20%

24

20

Fuel Consumption: Diesel: 27L/hrs - Methane: 25 kg/hrs
Engine Efficiency: Diesel: 45% - Methane: 37.5 (average field data)
Reference Yearly Usage: 1500 hrs/year
Pump Price: average price across IT/FR/UK/DE/ES/PO/NL

Not considering urea usage (2% saving) and the elimination of potential fuel theft, the Methane tractor could achieve more than €5500 per year savings compared to a diesel powered tractor.
Total Cost of Ownership – Energy Independent Farm Methane

Not considering urea usage (2% saving) and the elimination of potential fuel theft, the Methane tractor could achieve more than €13,000 per year savings compared to a diesel powered tractor.
New Holland T6 LP Powered Tractor

Similar Benefits to Methane

- Reduced operating cost 20%-40%
- Less daily maintenance
- No fuel leak soil contamination
- Significant reduction in in-cab and drive-by noise
- 80+ percent reduction in smog-producing hydrocarbon emissions compared with Tier IV diesel
- 90% space reduction for after treatment volume

Additional Benefits to LP

- Low pressure fuel tanks
- Wide availability in the US – 70% comes from domestic natural gas
Hydrogen Fuel Cell – New Holland T6

- Splits hydrogen gas (H2) molecule to produce electricity
- Zero emissions
- Lower noise
- High efficiency (150% of diesel)
- Fuel cells are currently expensive but cost could drop dramatically if widely used in automotive
- Limited distribution infrastructure (H2) but could be produced locally on farms
- Requires tanks for pressurized hydrogen fuel (790 bar currently being used in automotive)
Autonomous Vehicles

CNH interpretation of the SAE levels of autonomy

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance</td>
<td>Coordination & Optimization</td>
<td>Operator Assisted Autonomy</td>
<td>Supervised Autonomy</td>
<td>Full Autonomy</td>
</tr>
<tr>
<td>*All manned vehicles</td>
<td>*All manned vehicles</td>
<td>*Manned back-up</td>
<td>*In-field supervision of unmanned vehicles</td>
<td>*No local supervision (remote supervision or artificial intelligence)</td>
</tr>
</tbody>
</table>

Available Today — In Development
E-Braking Requirements

Autonomous Vehicles

- Traction Control
- Hill holding / hill start aid
- Brake steering
- Trailer braking (hydraulic and pneumatic)
- ABS
- Auto braking (remote and autonomous - fail operational)
E-Steering Requirements

Autonomous Vehicles

- Steering wheel and joystick capable
- Remote/autonomous function: Fail Operational
Fluid Power Challenges

Summary

<table>
<thead>
<tr>
<th>Driver</th>
<th>Fluid Power Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation to Zero</td>
<td>Higher reliability</td>
</tr>
<tr>
<td></td>
<td>Few leaks</td>
</tr>
<tr>
<td></td>
<td>Longer oil life</td>
</tr>
<tr>
<td>CO2 & Other Air Emissions</td>
<td>Higher efficiencies</td>
</tr>
<tr>
<td></td>
<td>Reduce parasitic losses</td>
</tr>
<tr>
<td></td>
<td>Alternate power sources</td>
</tr>
<tr>
<td>Autonomous Vehicles</td>
<td>Higher safety level</td>
</tr>
<tr>
<td></td>
<td>Full EH capability</td>
</tr>
</tbody>
</table>
Topic 1 – High Performance Hydraulic fluids

What are the potential system efficiency gains utilizing hydraulic fluids that far exceed specifications defined in current standards:

- ISO 11158 HV
- DIN 51524-3
- ASTM D6158 HVHP
High Performance Hydraulic fluids

In addition to performance criteria for ISO VG 46:

- Inherent Viscosity Index ≤ 130
- Dynamic viscosity @ -40°C ≥ 10,000 cP
- Shear ≥ 15% with 20hr KRL @ 60C per ISO 26422
- ASTM D943 ≤ 7000 hrs
- Anti-wear depletion ≤ 4000 hrs
Project Outcome

Deliverables at close of project:

- Further technical data (other than OEM) to demonstrate all fluids are NOT the same
- Standardized test methods for comparing efficiency gains at the component and machine level
- Promote development of higher performing fluids within fluid blend companies on a wider scale
• New Architecture Development
 o Fundamental research needs
 o Market barriers
 – Customer acceptance
 – Reliability
 – Durability

• New Technology Barriers
 o Engine efficiency
 o Multi-modal systems
 o Control strategies

• Hybridization
 o Power storage
 o Power density
 o New material
 o Engine efficiency