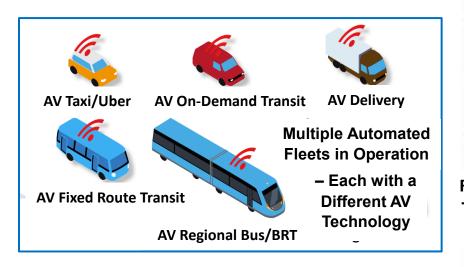
The Convergence of Automation and Electrification in the Implementation of Automated Mobility Districts

J. Sam Lott, P.E. Automated Mobility Services, LLC

Working under the direction of: Dr. Stan Young – NREL Mobility Innovation and Equity Team Lead



NREL's AMD Implementation Research Focus:

- 1. Studies to determine how <u>automated/autonomous vehicle (AV)</u> <u>fleets can be effectively deployed on a large scale</u> in dense urban environments such that operational efficiency, energy conservation, and safety is achievable in the near/medium term.
- 2. Phases 1 and 2 Research has <u>documented and interpreted the</u> <u>trends from early AV deployment sites</u> as prototypical AMDs.
- 3. Phase 3 Research is now addressing <u>battery-electric vehicle</u> <u>charging</u> and associated <u>transit station/curbfront infrastructure</u>.
- 4. Phase 3 Overall Objective is to <u>qualify industry readiness and</u> <u>quantify the costs and energy use</u> deploying of AV fleets in AMDs.

AMD Concept Has Multiple AV Fleets Operating Within the District

AMDs in Urban Districts and Major Activity Centers with AV Circulation

AV Microtransit AV Freight/Package **Delivery Along Arterial and Neighborhood Streets** AV Local Bus on **Fixed/Flex-Route Along Arterial Streets** AV Taxi AV Uber/Lyft AMD Intermodal Station for AV Transit **Regional High Capacity Circulator Access to Regional AV Bus/BRT** Transit AV Bus/BRT on **Protected HOV Lanes**

On-Demand

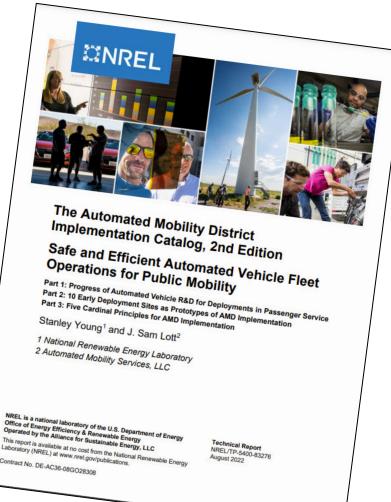
Source: Houston-Galveston Area Council

<u>The Automated Mobility District Implementation Catalog – Insights</u> <u>from 10 Early Deployment Sites</u> *The 1st Edition was published in 2020.*

- Site #1: Columbus, Ohio
- Site #2: Arlington, Texas
- Site #3: Las Vegas, Nevada
- Site #4: Jacksonville, Florida
- Site #5: Houston, Texas

Source: DriveOhio 2019

The Automated Mobility District Implementation Catalog – Insights from 10 Early Deployment Sites


The 1st Edition was published in 2020.

Site #6: M-City, University of Mich.

- Site #7: Rivium, City of Capelle aan den Ijssel, Netherlands
- Site #8: Denver, Colorado
- Site #9: Gainesville, Florida
 - Site #10: Babcock Ranch, Florida

AMD Implementation Catalog Series is Foundational to Ongoing Research

<u>The Automated Mobility District</u> <u>Implementation Catalog, 2nd Edition</u>

Safe and Efficient Automated Vehicle

Fleet Operations for Public Mobility

Young, Stanley and J. Sam Lott. 2022.

Golden, CO: National Renewable Energy Laboratory. NREL/TP-5400-83276. https://www.nrel.gov/docs/fy22osti/83276.pdf.

The 2nd Edition was published in August 2022.

Challenges of Automated Operations

- 1. Fully automated On-Demand Transit Is operationally difficult for direct-dispatch between passenger's origin to destination.
- 2. On-Demand Transit is finding fixed locations for passenger pickup and drop-off to be highly beneficial for operations "Corner-to-Corner".
- 3. Single travel party service becomes more complicated with multiparty shared ride service.
- 4. Serving a highly "peaked" transit-trip generator such as a regional transit intermodal station may require staging of empty vehicles.
- 5. Operating fleets become larger as vehicles become smaller and more suited for On-Demand Transit.

Challenges of Electrification

- 1. Multiple Charging Facility locations within the transit service network.
- 2. Size of Charging Facilities in terms of the number of vehicle charging positions and corresponding kW capacity.
- 3. Battery charging rate and charging time vs. service range of vehicle.
- 4. High cost of charging infrastructure for faster charging speeds and smaller fleet requirements.

<u>AV/EV Operational Complexity</u> is substantially greater when battery-electric vehicles are operating in <u>On-Demand Transit</u> mode