Odyne PHEV System Performance Evaluation – Cumulative

The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Odyne deployed 119 plug-in hybrid electric medium-duty utility trucks with a parallel hybrid system that were operated by a variety of companies in diverse climates across the country. Operating data from 94 of these vehicles were reported to NREL and are summarized in this report.

Number of vehicles (collected / deployed):94 / 119Reporting period:12/1/2014 to 6/30/2015

Number of driving days recorded: 1,057

Project System Specifications¹

Platform GVWR	23,000–56,000 pounds	
Motor Power	Peak: 95 hp Cont.: 56 hp	Body Type Distribution
Motor Torque	232 ft-lbs	
Battery Capacity	28.4 kWh	Digger
Battery Voltage	350 V	10%
Onboard Charger	3.0 kW	
Exportable Power	6–12 kW	Compressor 3%
Transmission	Allison 2000, 3000 & 4000	Bucket _/ 72% Fuel Tankers
Drive	RWD 4X2 or 6X4	3% Vacuum
Hybrid System Weight	1,200 –1,600 pounds	1%
Trip Data		

Average Diesel Equivalent Fuel Economy ²	6.4	mpge
Total Distance Traveled	29,025	miles
0 – 45 mph 45+ mph Distance	60.9 39.1	%
0 – 45 mph 45+ mph Distance	15,323 9,826	miles
ePTO DC Electrical Energy Discharged	8.8	kWh/day
Driving DC Electrical Energy Discharged ³	0.59	kWh/mile
Average Regenerative Braking DC Energy	0.20	kWh/mile
Net Driving DC Electrical Energy Discharged	0.39	kWh/mile
DC Energy Consumption – Driving ePTO ⁴	64.0 36.0	%

ePTO: electric power take-off

Route Information

Average Distance Traveled per Day	23.8 miles Median Daily Driving Distance by Mon		
Average Daily Kinetic Intensity ⁵	1.4 1/mile	20 Decem	ber
Average Number of Stops: per Day per Mile	37.9 2.98	E 45	у
Average Brake (Regen) Events	10.4 per mile	= E 13 ■Februa	iry
Average Maximum Acceleration	0.29 g		
Average Daily Maximum Driving Speed	45.5 mph	_ ≝ 5 —	
Average Daily Driving Speed	20.8 mph	⊠ May	
	· · · ·		

Daily Driving Distance

Energy Use and Time by Operating Mode

Plug-In Charging

Total Number of Plug-In Charges	892		Total Charge Energy	al Chargo Enorgy	
Median Duration Plugged-In	13.3 Hours	3000 -	Total Onlarge Energy	12,000	
Avg Vehicle Charging Frequency	1.06 per day			10.000	
Average Charge Energy	12.2 kWh/Charge	(10,000	
Median SOC When Plugged In	32.6 %	2000 -		8,000	
Median SOC When Unplugged	87.6 %	ithly		6,000	
Overall AC Energy	12,097 kWh			4,000	
Overall DC Electrical Energy Charged	10,863 kWh	2		2,000	

Average Battery Pack SOC at Plug Events

AC Plug-In Energy per Charge

Time of Day when Plugged In and Unplugged

Engine Charging⁴

Efficiency (%)

Stationary PTO Use – Engine Charging

1. Vehicle specifications provided by Odyne Systems & EPRI (*Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation* 3002006566 Final Report, September 2015).

2. Miles per gallon diesel equivalent (mpge) is calculated based on a 128,488 Btu per diesel gallon energy density provided by U.S. Department of Energy's Alternative Fuels Data Center. Using this information, diesel fuel mpge equates to 37.656 kWh.

3. Battery pack state of charge (SOC) as reported over telematics used to track tractive energy usage when speed is greater than zero.

4. Distribution of total DC energy from battery pack, including charge-depleting mode and energy from regenerative braking, does not distinguish between mild and aggressive driving calibrations for hybrid drive systems and therefore is not representative of any particular vehicle.

5. Kinetic intensity measures hybrid advantage. For more information on kinetic intensity, please refer to O'Keefe, Simpson, Kelly, and Pedersen, "Duty Cycle Characterization and Evaluation Towards Heavy Hybrid Vehicle Applications," SAE Technical Paper 2007-01-0302, 2007, doi:10.4271/2007-01-0302.

6. Energy usage includes battery pack energy and diesel fuel consumed (see note 2). Engine charge energy indicates fuel consumed to charge battery and is not a net energy value.

7. Engine charge events (battery charging using diesel engine) shorter than 10 minutes were removed from the data.

8. Engine charge energy efficiency measures the conversion of diesel fuel (see note 2) to DC battery pack energy.

General note: These figures cover multiple vehicle configurations in multiple cities with multiple environments, topologies, and load profiles. These numbers are averages of a diverse fleet of vehicles and cannot be used to predict the efficiency of any particular Odyne hybrid vehicle.

For more information, visit: vehicles.energy.gov

Prepared by the National Renewable Energy Laboratory (NREL), a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; NREL is operated by the Alliance for Sustainable Energy, LLC.

Energy Efficiency & Renewable Energy

4

DOE/GO-102046-4911 • September 2016