Overview of Computer-Aided Engineering of Batteries and Introduction to Multi-Scale, Multi-Dimensional Modeling of Li-Ion Batteries

P.I. - Ahmad A. Pesaran, G.-H. Kim, K. Smith, S. Santhanagopalan, K.-J. Lee
National Renewable Energy Laboratory

May 15, 2012

NREL/PR-5400-54425
Project ID #ES117

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

This presentation covers two related topics: Overview of the CAEBAT Project and NREL’s battery Multi-Scale Multi-Dimensional (MSMD) modeling work under CAEBAT.

Timeline

- **Project Start Date:** April 2010
- **Project End Date:** September 2014
- **Percent Complete:** 30%

Budget

- **Total Project Funding:**
  - DOE Share: $9 M
  - Contractor Share: $7 M
- **Funding Received in FY11:**
  - $3.5 M ($2.5 M for subcontracts)
- **Funding for FY12:**
  - $1.0 M expected

Barriers

- Cost and life
- Performance and safety
- Lack of validated computer-aided engineering tools for accelerating battery development cycle

Partners

- Project lead: NREL
- Oak Ridge National Laboratory (ORNL), Idaho National Laboratory (INL), Colorado School of Mines (CSM)
- EC Power/Penn State Univ (PSU)/Ford/Johnson Controls, Inc. (JCI)
- General Motors (GM)/ANSYS/ESim
- CD-adapco/Battery Design/JCI/A123Systems

Funding provided by Dave Howell of the DOE Vehicle Technologies Program. The activity is managed by Brian Cunningham of Vehicle Technologies.
Simulation and computer-aided engineering (CAE) tools are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry.

There has been a need to have several user-friendly, 3D, fully integrated, and validated CAE software tools for the battery community.

National laboratories, industry, and universities have been developing models on cost, life, performance (electro-thermal, electrochemical) and abuse to simulate lithium-ion batteries.

Realizing the need, DOE’s Vehicle Technologies Program initiated a project in April 2010 to bring together these battery models to develop CAEBAT tools for designing batteries.
**Objectives**

- The overall objective of the CAEBAT project is to incorporate existing and new models into “validated” battery design suites/tools.

- Objectives of the past year (March 2011 to March 2012) were to:
  - Complete negotiations and enter into subcontract agreements with the three teams competitively selected in 2010.
  - Subcontractors to start technical work.
  - NREL to have kickoff and quarterly meetings with subcontractors to monitor their technical performance and progress.
  - Continue developing NREL’s multi-physics electrochemical lithium-ion battery (MSMD) model and document the approach and results in a peer-reviewed journal.
Relevance

• CAEBAT objectives are relevant to the Vehicle Technologies Program’s targets of:
  – Plug-in hybrid electric vehicle (PHEV) battery costs of $300/kWh and life of 15 years by 2014
  – PHEV battery costs of $270/kWh and life of 10+ years by 2017
  – Electric vehicle battery costs of $150/kWh and life of 10 years by 2020

• The impact of this project when CAEBAT tools are made available could be significant:
  – Shorten design cycles and optimization of batteries
  – Simultaneously address the barriers of cost, performance, life, and safety of lithium-ion with quantitative tools
# Milestones

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone or Go/No-Go Decision</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2011</td>
<td>Negotiate and place subcontracts with CAEBAT RFP awardees</td>
<td>Completed</td>
</tr>
<tr>
<td>July 2011</td>
<td>Progress review on the work for the CAEBAT-NREL program</td>
<td>Completed</td>
</tr>
<tr>
<td>September 2011</td>
<td>Document NREL’s MSMD modeling approach in a peer-reviewed journal</td>
<td>Completed</td>
</tr>
<tr>
<td>July 2012</td>
<td>Document latest NREL battery models, solution methods, and codes developed under CAEBAT</td>
<td>On Track</td>
</tr>
<tr>
<td>September 2012</td>
<td>Technical review of the three CAEBAT subcontracts</td>
<td>On Track</td>
</tr>
</tbody>
</table>
Overall CAEBAT Strategy

- NREL to coordinate the CAEBAT project activities for DOE
- Perform battery modeling development and use (existing or new) models at national laboratories
- Coordinate and exchange with other organizations doing fundamental materials modeling (such as BATT, Applied Battery Research (ABR), or Basic Energy Sciences)
- Collaborate with industry and/or universities through competitive solicitations
- ORNL to develop an interface platform for interactions among all models
CAEBAT and MSMD Approach

• Develop CAEBAT software tools with industry
  – Background from FY 10 and Fall of FY11
    o We initiated a competitive process (RFP) to solicit cost-shared proposals from the industry
    o After a comprehensive process, three teams were selected to develop CAEBAT software tools
  – Approach in 2011
    o Completed negotiations and entered into subcontract agreements with the three selected teams
    o Initiated CAEBAT projects and monitor technical performance and progress
    o Collaborated with ORNL on Open Architecture Software

• Perform in-house R&D to enhance and further develop NREL’s existing electrochemical-thermal (MSMD) models for use by CAEBAT participants
CAEBAT Subcontracts Finalized

Accomplishments

- NREL negotiated the terms and conditions with the three teams and their lower tiers, along with milestones and final budgets, assigned separate NREL technical monitors, and then signed the three subcontracts.
- Cost sharing by each of the subcontractors is 50%.
- Details: Subcontractor (partners), start date, total project budget, DOE/NREL funded amount, NREL tech monitors:

<table>
<thead>
<tr>
<th>Team</th>
<th>Subcontract Signed</th>
<th>Project Budget</th>
<th>NREL Subcontract Budget</th>
<th>NREL Technical Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC Power (with PSU, JCI, and Ford Motor Company)</td>
<td>May 2, 2011</td>
<td>$3.0M</td>
<td>$1.50</td>
<td>Shriram Santhanagopalan</td>
</tr>
<tr>
<td>General Motors (with ANSYS and ESim)</td>
<td>June 1, 2011</td>
<td>$7.15M</td>
<td>$3.58M</td>
<td>Gi-Heon Kim</td>
</tr>
<tr>
<td>CD-adapco (with Battery Design LLC, JCI and A123 Systems)</td>
<td>July 1, 2011</td>
<td>$2.73M</td>
<td>$1.37M</td>
<td>Kandler Smith</td>
</tr>
</tbody>
</table>
CAEBAT Projects Underway

Accomplishments

- Kickoff meetings were conducted in June 2011 to review plans by each team.
- Weekly, biweekly, or monthly meetings were held to review progress and address issues.
- Quarterly progress review meetings were held at NREL, DOE, and subcontractor sites.
- Each subcontractor presented progress overview at US Drive Technical Committee Meeting.

Each subcontractor will provide objectives, approach, and accomplishments of their project in the next three presentations.

Tracking projects by monthly conference calls and face-face meetings with the three competitive teams separately.
Coordinating on Open Architecture Software

Accomplishments

• Interacted with ORNL on the Open Architecture Software element of CAEBAT “that facilitates integrating battery modeling components within an open architecture.”
  – Participated in regular conference calls
  – Participated at ORNL’s kickoff meeting
  – Provided MSMD model for testing the integration approach
  – Provided suggestions for standardized input data and battery state

from ORNL presentation by S. Pannala, 2012 AMR

ORNL will provide the objectives, approach, and accomplishments of this project in AMR 2012 presentation ES121
NREL Battery Modeling Under CAEBAT


Commonly Used Porous Electrode Model

Background

Charge Transfer Kinetics at Reaction Sites

\[ j^{Li} = a_s i_o \left\{ \exp \left( \frac{\alpha_a F}{RT} \eta \right) \right\} \left\{ 1 - \exp \left( - \frac{\alpha_c F}{RT} \eta \right) \right\} \]

\[ i_0 = k \left( c_e \right)^{\alpha_a} \left( c_{s,\text{max}} - c_{s,e} \right)^{\alpha_c} \left( c_{s,e} \right)^{\alpha_e} \eta = (\phi_s - \phi_e) - U \]

Species Conservation

\[ \frac{\partial c_s}{\partial t} = \frac{D_s}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial c_s}{\partial r} \right) \]

\[ \frac{\partial (c_e c_s)}{\partial t} = \nabla \cdot \left( D_{e,s} \nabla c_e \right) + \frac{1 - t_e^o}{F} j^{Li} - \frac{i_o^e \cdot \nabla t_e^o}{F} \]

Charge Conservation

\[ \nabla \cdot \left( \sigma^{\text{eff}} \nabla \phi_s \right) - j^{Li} = 0 \]

\[ \nabla \cdot \left( \kappa^{\text{eff}} \nabla \phi_e \right) + \nabla \cdot \left( \kappa_D^{\text{eff}} \nabla \ln c_e \right) + j^{Li} = 0 \]

Energy Conservation

\[ \rho c_p \frac{\partial T}{\partial t} = \nabla \cdot \left( k \nabla T \right) + q^{\text{en}} \]

\[ q^{\text{en}} = j^{Li} \left( \phi_s - \phi_e - U + T \frac{\partial U}{\partial T} \right) + \sigma^{\text{eff}} \nabla \phi_s \cdot \nabla \phi_s + \kappa^{\text{eff}} \nabla \phi_e \cdot \nabla \phi_e + \kappa_D^{\text{eff}} \nabla \ln c_e \cdot \nabla \phi_e \]

- Pioneered by John Newman’s group at the University of Berkeley (Doyle, Fuller, and Newman 1993)
- Captures lithium diffusion dynamics and charge transfer kinetics
- Predicts current/voltage response of a battery
- Provides design guide for thermodynamics, kinetics, and transport across electrodes

- Difficult to apply in large-format batteries where heat and electron current transport critically affect the battery responses
Through the multi-year effort supported by DOE, NREL has developed a modeling framework for predictive computer simulation of lithium-ion batteries (LIBs) known as the **Multi-Scale Multi-Dimensional (MSMD)** model that addresses the interplay among the physics in varied scales.

**Accomplishments**

- **Introduces multiple computational domains** for corresponding length-scale physics
- **Decouples LIB geometries** into separate computation domains
- **Couples physics** using the predefined inter-domain information exchange
- **Selectively resolves higher spatial resolution** for smaller characteristic length-scale physics
- **Achieves high computational efficiency**
- **Provides flexible & expandable modularized framework**

MSMD Segregates Time & Length Scales

Accomplishments

- **Self-balancing nature** allows a continuum approach with thermodynamic representation for sub-domain systems.
- Time-scale differences in kinetic/dynamic transport processes conducive to segregation into sub-domain systems.

Electronic conductivity is much higher in metal current collectors than in a composite electrode matrix, e.g., \( \sigma_{ce} << \sigma_{cc} \)

Lithium transport is much faster in liquid electrolyte than in solid particles, e.g., \( D_s << D_e \)

Local information transfers from cell to electrode sandwich and to particles

Averaged parameters transfer back from particles to electrode sandwich and to the cell

Accomplishments
Accomplishments

Local information transfers from cell to electrode sandwich and to particles

Domain Invariant

Domain Average

Domain Invariant

Averaged parameters transfer back from particles to electrode sandwich and to the cell
Modularized hierarchical architecture of the MSMD model allows independent development of submodels for physics captured in each domain.

**Particle Domain Submodel Development**
- **Solution Models & Method/Algorithms**
  - 1D Spherical particle model
  - Finite Element

**Electrode Domain Submodel Development**
- **Solution Models & Method/Algorithms**
  - 1D porous electrode model
  - Reduced Order Approximation

**Cell Domain Submodel Development**
- **Solution Models & Method/Algorithms**
  - 3D Single potential pair continuum model
  - Finite Volume – Linear superposition

The modularized framework facilitates collaboration with experts across organizations.
Modularized hierarchical architecture of the MSMD model allows independent development of submodels for physics captured in each domain.

The modularized framework facilitates collaboration with experts across organizations.
### Submodel Choice

<table>
<thead>
<tr>
<th>Submodel in the Particle Domain</th>
<th>Solution Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1D spherical particle model</td>
<td>• SVM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Submodel in the Electrode Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1D porous electrode model</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Submodel in the Cell Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 3D single potential-pair</td>
</tr>
<tr>
<td>continuum model (SPPC)</td>
</tr>
<tr>
<td>• FV-LSM finite volume – linear</td>
</tr>
<tr>
<td>superposition methods</td>
</tr>
</tbody>
</table>
Predicted Non-Uniform Utilization in Prismatic Cells


Accomplishments

![Diagram of different tab designs and their effects on cell utilization](image)

Mid-size sedan PHEV10 US06

![Graphs showing state of charge and power vs. time](image)
### Application of MSMD for Predicting Cell Behavior

#### Wound Prismatic Cell

**Accomplishments**

Spirally wound prismatic cell

<table>
<thead>
<tr>
<th>Submodel Choice</th>
<th>Solution Method</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Submodel in the Particle Domain</strong></td>
<td></td>
</tr>
<tr>
<td>• 1D spherical particle model</td>
<td>• SVM</td>
</tr>
<tr>
<td><strong>Submodel in the Electrode Domain</strong></td>
<td></td>
</tr>
<tr>
<td>• 1D porous electrode model</td>
<td>• SVM</td>
</tr>
<tr>
<td><strong>Submodel in the Cell Domain</strong></td>
<td></td>
</tr>
<tr>
<td>• 3D Wound Potential-Pair Continuum Model (<strong>WPPC</strong>)</td>
<td>• FVM (finite volume methods)</td>
</tr>
</tbody>
</table>
The simulation shows that non-uniform charge transfer current density and temperature are distributed around the bent radius. Model results after 500 sec at 4C discharge of 20-Ah cell with continuous tabs at surface (left images) and unrolled jelly roll (right images).

**Temperature distribution**

**Reaction current density distribution**
Thermal Response of Wound Cylindrical Cells

Accomplishments

Impact of electrical current transport design:
- With higher number of tabs, current and temperature distribution are more uniform

Temperature imbalance at 4C discharge

Collaboration and Coordination

• Coordination with other national labs under CAEBAT
  – ORNL (open architecture software)
  – INL (providing electrolyte properties to CD-adapco)

• Collaboration with CAEBAT subcontractors to develop battery CAE design tools
  – General Motors, ANSYS, ESim
  – CD-adapco, Battery Design, A123 Systems, and JCI
  – EC Power, Penn State U, JCI, and Ford

• Colorado School of Mines – Published a joint paper on integrated general chemistry solver for charge transfer and side reactions in Li-ion
Proposed Future Work

• Collaborate with CAEBAT partners to develop CAEBAT tools
• Continue enhancing MSMD modeling framework
• Conduct experiments to validate NREL’s MSMD models
• Work with others in using MSMD models
• Collaborate with ORNL on implementing Open Architecture Software
• Review subcontractors’ plans with focus on validation of cell and pack models
• Key upcoming milestones:
  – Document latest NREL battery model developments by publishing journal papers
  – Compete technical review of the three CAEBAT subcontracts
  – Review 1st version of CAEBAT subcontractors’ tools for cells
• Work with collaborators and partners to promote the use of CAEBAT tools within the battery community
Publications and Presentations


CAEBAT activity was initiated to develop battery computer-aided engineering tools to accelerate development of batteries for electric vehicles.

CAEBAT activities at NREL consist of two parallel paths:
- Working with industry to develop CAEBAT tools through cost-shared subcontracts
- NREL in-house electrochemical battery model development

After a competitive process, NREL executed three subcontracts with three industry teams – a total of $14M with 50% cost share from industry – to develop the battery computer tools.
- GM/ANSYS/Esim
- CD-adapco/Battery Design/A123 Systems/JCI
- EC Power/Pennsylvania State University/JCI/Ford

NREL collaborated with ORNL on CAEBAT open architecture software.

NREL continued the development of its MSMD electrochemical/thermal modeling and published papers (for stacked prismatic, wound cylindrical, and wound prismatic configurations).

CAEBAT project is proceeding very well and according to plan.
Technical Back-Up Slides
NREL’s Cell-Domain Models: Orthotropic Continuum Model

Cell Domain Models

- **SPPC (Single Potential-Pair Continuum) model**: applicable to stack prismatic cells, tab-less wound cylindrical/(prismatic) cells:

  ![Stacked cell](image1)

- **MPPC (Multi Potential-Pair Continuum) model**: applicable to alternating stacked prismatic cells:

  ![Alternating stacked cells](image2)

- **WPPC (Wound Potential-Pair Continuum) model**: applicable to spirally wound cylindrical/(prismatic) cells:

  ![Cell with discrete tabs](image3)

- **Lumped model**: applicable to small cells

  ![Wound cell with continuous tab](image4)

- Discussed in this presentation
Electric Current Transport – Prismatic

4C discharge / Single-side cooling
Electric Current Transport – Prismatic

4C discharge / Single-side cooling

![Diagram of Electric Current Transport – Prismatic](image)
Electric Current Transport – Prismatic

4C discharge / Single-side cooling
Electric Current Transport – Prismatic

4C discharge / Single-side cooling

\[ \Phi_+ \text{ and } \Phi_- \text{ maps} \]

\[ \phi_e \text{ [mV]} \]

\[ x \text{ [µm]} \]

\[ 1C, 2C, 3C, 4C \]

\[ \Phi_+ - \Phi_- \text{ [mV]} \]

\[ x \text{ [µm]} \]

\[ Y \text{ [mm]} \]

\[ X \text{ [mm]} \]

cooled top

bottom
Wound Cells (Cylindrical or Prismatic)

- A pair of **wide** current collectors
- Two electrode pairs
- Cylindrical or prismatic cells

**Stacking**: Forming the first pair between inner electrodes

**Winding**: Forming the second pair between outer electrodes
WPPC (Wound Potential-Pair Continuum)

Applicable to flat wound prismatic cells
Kinetics Response – Wound Cylindrical Cell

Impact of electrical current transport design