Nanostructured Metal Oxide Anodes

A. C. Dillon (P.I.)
National Renewable Energy Laboratory, Golden
*University of Colorado, Boulder

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline

• October 1, 2007
• September 30, 2010
• 50% complete

Budget

• Total project funding
 FY08: $250K, FY09: $350K

Project lead: Anne Dillon

Barriers

– Cost: developing metal oxide based anodes from abundant, inexpensive metals
– Energy density: improvements in both gravimetric and volumetric energy densities have been demonstrated
– Safety: Anodes operate at higher potential relative to Li metal than graphite, eliminating the risk of Li plating
– Lifetime: Durable and reversible cycling has been achieved

Partners

• M.M. Thackeray and S-H. Kang, Argonne
• M.S. Whittingham, SUNY-Binghamton
• A. Greenshields, fortu
• S-H. Lee, Univ. of Colorado
• S.M. George, Univ. of Colorado
• A. Pesaran, NREL
Objectives

The ultimate goal of this activity is to develop optimized metal oxide nanostructured electrode materials to enable high-performance, durable, and affordable Li-ion batteries for power-assist HEVs and PHEVs that meet the DOE/FreedomCAR targets.

- Optimize MoO$_3$ nanoparticle electrodes in coin cell configuration and compare to previous results for electrophoresis deposited thin film MoO$_3$ electrodes.
- Demonstrate a full cell with an MoO$_3$ anode and state-of-the-art cathode with a high energy density and stable cycling performance.
- Employ first principles calculations to obtain better understanding of Li-insertion processes and for the prediction of new materials.
- Synthesize MoO$_2$ nanoparticles to test theoretical prediction that Li will be extracted at a lower potential (~ 1 V).
- Explore possibility of other metal oxide nanostructures made from even less expensive starting materials.
Milestones

- Sept 2008-report on optimization of MoO$_3$ thick electrodes tested in a coin cell configuration, complete. (In this report a reversible capacity of ~ 1050 mAh/g was demonstrated with good cycling and rate capability. This high capacity represents a 60% improvement compared to the thin film MoO$_3$ electrodes, 630 mAh/g)

- July 2009-report on optimization of MoO$_3$ anodes in a full cell with cathodes supplied by ANL. (Full cell data for the MoO$_3$ anodes coupled with both Li$_{1.05}$M$_{0.95}$O$_2$, M = Ni$_{1/3}$, Co$_{1/3}$, Mn$_{1/3}$ and the state-of-the-art lithium rich cathode 0.5Li$_2$MnO$_3$0.5Li(Mn$_{0.31}$Ni$_{0.44}$Co$_{0.25}$)O$_2$ is presented here.)
MoO₃ nanoparticles (nano-rods and nanospheroides) are produced using hot-wire chemical vapor deposition (HWCVD) at different reactor pressures.

Thin film battery electrodes (2-3 µm) have been fabricated with novel electrophoresis.

Thick film electrodes (~35 µm) for coin cell testing have been optimized versus a Li counter electrode by varying: binder/conductive additive composition and electrode pretreatment.

Full cell has been also optimized with ANL cathodes.

Electrophoresis

Material slurry

Coin Cell

Previously Reported
Thin Film Electrodes by Novel Electrophoresis

- Porous thin film without binder or conductive additive obtained after electrophoresis.
- Improved durable capacity (~ 600 mAh/g) found when using the thin film as anode and cycling between 3.0-0.005 V.

- Slightly less reversible capacity initially reproduced in coin cell configuration with a ratio of 70:15:15 (active material: acetylene black: polyvinylidene fluoride).
- Better reversibility achieved by pre-heating the electrode at 250 °C:
 - ~ 600 mAh/g was observed at C/3;
 - ~ 400 mAh/g delivered at 2C.
Technical Accomplishments
Optimization by Varying the Ratio of AB : PVDF

- Polymer rich electrodes provide continuous adhesion through the film.
- Maximum cycling capacity of \(~1050\) mAh/g (theoretical 1170 mAh/g) achieved at a ratio of 70:10:20 (MoO$_3$:AB: PVDF).
- Water desorption from the electrode observed at a high temperature (> 200 °C).
- CO\textsubscript{2} species are also observed at a higher temperature perhaps due to oxidation of the acetylene black.
- Polymer decomposition observed at a surprising low temperature (300 °C).
- Early decomposition may be catalyzed by nanostructured MoO\textsubscript{3}.
Technical Accomplishments
Explanation of Pre-heat Requirements
Results confirmed by Infrared Spectroscopy (IR)

- $\text{H}_2\text{O}/\text{OH}$ originated from acetylene black, PVDF and NMP solvent.
- Weakly bound water removed by pre-heat treatment.
- Presence of bound water is one reason for irreversibility in cycling without pre-heating treatment.
Highly improved capacity of 1050 mAh/g is achieved by using a ratio of 70:10:20 and pre-heating at 250 °C.

Electrical resistance steadily decreases with increase of temperature.

Decreased capacity at 300 °C likely due to the binder breakdown and isolation of certain particle clusters.
Technical Accomplishment
Nano-sized Li_xMoO_3 : Displacement redox reaction?

Displacement redox reaction* for MoO_3 nanoparticles:

$$\text{MoO}_3 + 6\text{Li}^+ + 6\text{e} \leftrightarrow 3\text{Li}_2\text{O} + \text{Mo}$$

$$6\text{Li} \leftrightarrow 6\text{Li}^+ + 6\text{e}$$

$$\text{MoO}_3 + 6\text{Li} \leftrightarrow 3\text{Li}_2\text{O} + \text{Mo}$$

What is size distribution of Mo clusters?

First-principles molecular dynamics (FPMD)

- $(\text{Li}_4\text{MoO}_3)_{36} \& (\text{Li}_6\text{MoO}_3)_{36}$
- Start from uniformly lithiated alpha phase of MoO_3
- $T = 600 \text{ K}$ (to speed up the MD simulations)
- VASP code

Small clusters of Mo_n are easily formed within the nanoparticle.

The size n of the Mo cluster ranges from 2 to 9. The Mo nanoclusters are small enough to enable reversible Li insertion/desertion.

Our theoretical results support a displacement redox reaction which involves the formation and decomposition of metal nanoclusters.
Technical Accomplishments

In Situ Raman Showing Disordered Structure after Cycles

In situ Raman confirms significant loss in structural order in first insertion cycle consistent with molecular dynamics simulations.
Technical Accomplishments

Full Cell Testing Using ANL Cathode

- Full cell capacity of ~80 mAh/g achieved when cycling between 4.0-1.0 V by coupling with Gen 2 cathode obtained from M. Thackeray and S-H. Kang (ANL).
- Cell contains 12 mg cathode material and 2.5 mg anode material.
- In the full cell MoO$_3$ has a reversible capacity of ~677 mAh/g
Technical Accomplishments

Full Cell Testing Using ANL Cathode

- Stable capacity of 140 mAh/g (commercial capacity: ~80 mAh/g) when cycling between 4.0-0.01 V at a constant capacity and coupled with lithium rich cathode (250mAh/g) obtained from M. Thackeray and S-H. Kang at Argonne.

- Cell contains 7.4 mg cathode material and 1.6 mg anode material.

- In the full cell MoO$_3$ has a reversible capacity of ~ 776 mAh/g.
Technical Accomplishments

HWCVD Production of Nano-MoO$_2$

XRD MoO$_2$

Voltage Profile

- Previously theoretical predictions indicated crystalline MoO$_2$ would have a lower lithium extraction potential.
- Nano-MoO$_2$ was produced by the modified HWCVD process.
- However, upon cycling a thin film of the MoO$_2$ material, the voltage profile was not significantly different from that of MoO$_3$.
- The discrepancy with the theory may be attributed to the fact that the nanoparticles become highly disordered upon cycling, with the calculations performed for crystals.
Fe$_2$O$_3$ nanofibers (40-50 nm width) has been produced using hydrothermal process followed by post-heat at 300 °C.

Fe$_3$O$_4$ nanoparticles (10-20 nm) obtained by using reducing agent in hydrothermal process.

Iron oxides allow for a more economical system.
• Oxygen vacancy creates defect states near the conduction band of transition metal oxides such as WO$_3$, MoO$_3$, and Fe$_2$O$_3$.
• For sub-stoichiometric amorphous WO$_{3-x}$ the conduction band is populated to a larger extent.
• The conduction band filling will lower the potential inserted Li.
• By creating oxygen vacancies and substoichimetric amorphous samples, we can reduce Li potentials of MoO$_3$ and Fe$_2$O$_3$ to make them more suitable anodes.
Recent Development
Atomic Layer Deposition (ALD) Improves Durability

Improved cyclability achieved for both cathode and anode by applying a thin ALD coating.
ALD coatings eliminate SEI and surface reactions that cause degradation.
Proposed FY 09 Future Work

• Optimize full cells with ANL cathodes to improve durable capacity and rate capability (July 2009 Milestone).
• Work with fortu (Switzerland) to develop high-voltage cell.
• Perform theoretical calculations to understand the hysteresis of the charge/discharge for the MoO₃ nanoparticles. Use theoretical calculations to predict composition and orientation of economical oxides nanoparticles with more desirable voltage profiles.
• Synthesis of alternative nanostructures made from abundant elements, such as Fe₂O₃, Fe₃O₄, and MnO₂ will be explored. Inexpensive synthesis routes—including HWCVD, hydrothermal techniques, and electrodeposition—will be employed.
• Apply a protective ALD coating on graphite nanoparticles to eliminate surface degradation mechanisms and improve rate capability.
Conclusions

- Capacity of MoO$_3$ anode has been increased to ~1050 mAh/g by optimizing the coin cell configuration. TPD, TGA, and IR employed to facilitate these optimizations.
- Theoretical calculations were performed to explain the mechanism for the increased Li-insertion observed in the coin cell testing.
- The MoO$_3$ anode has been successfully paired with two Argonne cathodes: Li$_{1.05}$M$_{0.95}$O$_2$, M = Ni$_{1/3}$, Co$_{1/3}$, Mn$_{1/3}$ and the state-of-the-art lithium rich cathode 0.5Li$_2$MnO$_3$0.5Li(Mn$_{0.31}$Ni$_{0.44}$Co$_{0.25}$)O$_2$
- In-situ Raman capabilities, established this year, show that MoO$_3$ nanoparticles become highly disordered in the initial cycle.

<table>
<thead>
<tr>
<th></th>
<th>Gravimetric Capacity (mAh/g)</th>
<th>Volumetric Capacity (mAh/cm3)</th>
<th>Full Cell Capacity (mAh/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY08</td>
<td>630</td>
<td>2200</td>
<td>--</td>
</tr>
<tr>
<td>FY09</td>
<td>1050</td>
<td>800</td>
<td>140</td>
</tr>
<tr>
<td>Commercial</td>
<td>350 (graphite)</td>
<td>770 (graphite)</td>
<td>80 (graphite/LiCoO$_2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(J.Power Sources 88, p.237, 2000)</td>
</tr>
</tbody>
</table>
Acknowledgments

• DOE OVTP Support
 • David Howell

• NREL Program/Project Guidance
 • Ahmad Pesaran
 • Terry Penney
Publications

