PHEV Energy Storage
Performance/Life/Cost Trade-off Analysis

8th Advanced Automotive Battery Conference
Tampa, Florida
May 15th, 2008

Tony Markel, Kandler Smith, and Ahmad Pesaran
(Tony_Markel@nrel.gov)
National Renewable Energy Laboratory

Supported by
Energy Storage R&D
Vehicle Technologies Program
Office of Energy Efficiency and Renewable Energy
U.S. Department of Energy

NREL/PR-540-43159
Acknowledgements

David Howell and Tien Duong,
US Department of Energy (DOE)
Vehicle Technologies Program

Jeff Belt and John Christophersen,
Idaho National Laboratory (INL)

Vince Battaglia,
Lawrence Berkeley National Laboratory (LBNL)

Loic Gaillac,
Southern California Edison (SCE)

Todd Rhodes and Steve Lasher,
TIAX

Aaron Brooker and Gi-Heon Kim,
National Renewable Energy Laboratory (NREL)
Outline

• Purpose and Goal
• Approach
• Basis for Performance, Life, and Cost Models
• Preliminary Results
• Alternative Approach
• Conclusion
• Next Steps
Goal: Develop linked parametric modeling tools to mathematically evaluate battery designs to satisfy challenging operational requirements for a PHEV.

- Reduce risk of
 - Premature battery failure
 - Falling short of consumer expectations

- Reduce incremental cost
 - Use data to minimize necessary energy/power margin

- Accelerate market penetration to achieve significant fuel savings
PHEV Battery Requirement Analysis
USABC’s Two Sets of Battery Requirements

• The battery requirements were selected based on two sets of electric range and time frame:

 — A 10-mile all-electric-range (over UDDS) for a crossover vehicle in the mid-term (2012)
 » Supporting potential early market experience

 — A 40-mile all-electric-range (over UDDS) for a midsize car in the long-term (2015-2016)
 » Supporting the President’s Initiative
Requirements of End of Life Energy Storage Systems for PHEVs

<table>
<thead>
<tr>
<th>Characteristics at EOL (End of Life)</th>
<th>High Power/Energy Ratio Battery</th>
<th>High Energy/Power Ratio Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Equivalent Electric Range</td>
<td>miles</td>
<td></td>
</tr>
<tr>
<td>Peak Pulse Discharge Power - 2 Sec / 10 Sec</td>
<td>kW</td>
<td>10 / 40</td>
</tr>
<tr>
<td>Peak Regen Pulse Power (10 sec)</td>
<td>kW</td>
<td>46 / 38</td>
</tr>
<tr>
<td>Available Energy for CD (Charge Depleting) Mode, 10 kW Rate</td>
<td>kWh</td>
<td>25</td>
</tr>
<tr>
<td>Available Energy for CS (Charge Sustaining) Mode</td>
<td>kWh</td>
<td>3.4</td>
</tr>
<tr>
<td>Minimum Round-trip Energy Efficiency (USABC HEV Cycle)</td>
<td>%</td>
<td>90</td>
</tr>
<tr>
<td>Cold cranking power at -30°C, 2 sec - 3 Pulses</td>
<td>kW</td>
<td>7</td>
</tr>
<tr>
<td>CD Life / Discharge Throughput</td>
<td>Cycles/MWh</td>
<td>5,000 / 17</td>
</tr>
<tr>
<td>CS HEV Cycle Life, 50 Wh Profile</td>
<td>Cycles/MW</td>
<td>15</td>
</tr>
<tr>
<td>Calendar Life, 35°C</td>
<td>year</td>
<td>120</td>
</tr>
<tr>
<td>Maximum System Weight</td>
<td>kg</td>
<td>40</td>
</tr>
<tr>
<td>Maximum System Volume</td>
<td>Liter</td>
<td>80</td>
</tr>
<tr>
<td>Maximum Operating Voltage</td>
<td>Vdc</td>
<td>>0.55 x Vmax</td>
</tr>
<tr>
<td>Minimum Operating Voltage</td>
<td>Vdc</td>
<td>>0.55 x Vmax</td>
</tr>
<tr>
<td>Maximum Self-discharge</td>
<td>Wh/day</td>
<td>50</td>
</tr>
<tr>
<td>System Recharge Rate at 30°C</td>
<td>kW</td>
<td>1.4 (120V/15A)</td>
</tr>
<tr>
<td>Unassisted Operating & Charging Temperature Range</td>
<td>°C</td>
<td>-30 to +52</td>
</tr>
<tr>
<td>Survival Temperature Range</td>
<td>°C</td>
<td>-46 to +66</td>
</tr>
<tr>
<td>Maximum System Production Price @ 100k units/yr</td>
<td>$</td>
<td>$1,700</td>
</tr>
</tbody>
</table>

Supporting simulations assumed degradation in Power (~30%) and Energy (~20%) from Beginning of Life (BOL) to End of Life (EOL)

www.uscar.org/commands/files_download.php?files_id=118
Objective

- Develop a process to optimize PHEV battery designs for performance, life, and cost from vehicle system perspective.
PHEV Battery Tradeoff Study: Approach

• Use physics-based battery models to:
 — Improve understanding of battery design/performance/life tradeoffs
 — Develop capability to predict battery life under any usage scenario
 — Reduce the number of iterations in the prototype battery design & testing process
 — Reduce the experimental burden of technology life verification

• Use credible battery cost models developed by others
• Use vehicle simulation tools
• Run optimization routine to come up with designs that have best combination of performance, life, and cost
Optimization of PHEV Battery Design

- **Performance Model**
- **Life Model**
- **Cost Model**

Designing PHEV batteries to meet requirements, such as DOE/USABC, at minimum cost.

Source: INL, LBNL

Source: VARTA

Source: INL, LBNL
Electrochemical Performance Model

- Used Newman-type model – coded in Matlab
- Chose electrochemical input parameters representative of current technology
- Tuned to constant current data (below) & INL HPPC data (not shown)

Saft VL41M:
Graphite negative/ NCA positive

Constant current discharge:
- Saft data sheet (C/3, 1C, 2C, 150A)
- INL data (1C)
Objective: Quantify degradation for any given usage profile

- Time at T
- Time at SOC
- # cycles at ΔDOD_i
- Rate dependency

Method: Include various stress factors

- **Mechanical** (cycling stress, expansion/contraction)
- **Thermal** (chemical reactions at T, SOC)
- **Electrochemical** (side reactions in use)

= Total Stress Factor (TSF)
Example: EPRI/SCE PHEV Cycling profile decomposed into Ncycles @ ΔDOD and Time @ T, OCV

SCE Accelerated Testing Experimental Data for Sprinter Li-Ion Module

ΔSOC = 0.025
Continued Example: Extracting Cycle Statistics for use with Life Model

Operation Attributes

- $N_{cycles} @ \Delta DOD$
- Time @ T, SOC

Life Model

Source: VARTA

Source: INL, LBNL

Operation Attributes

- Many small SOC swings (minor contribution to loss of capacity)
- One large SOC swing (84% contribution to loss of capacity!)
Model Forecasts Capacity Loss and Impedance Growth From Operational Data

\[N_{\text{cycles}} @ \Delta \text{DOD} \]

\[\text{Time} @ T, \text{SOC} \]

Life Model

Mechanical Stress
(cycling stress, expansion/contraction)
(at fixed temperature)

\[y = 14.34x^{0.590} \]
\[y = 14.07x^{0.389} \]
\[y = 18.04x^{0.277} \]

Thermal Stress
(chemical reactions at various T, SOC)

\[\hat{Y} = 1 + \exp\left(\hat{\beta}_0 + \hat{\beta}_1 \cdot \frac{1}{T}\right) \cdot t^{0.5} \]

\[t = \text{time (years)} \]
\[T = \text{temperature (K)} \]
\[\hat{\beta}_0 = 18.11 \]
\[\hat{\beta}_1 = -6236 \]

Christian Rosenkranz (JCS/Varta) EVS-20

Vince Battaglia (DOE/TLVT)

Capacity Loss, Impedance Growth
Fitting the Life Model to Data - Impedance Growth Model Using SCE Data

Thermal Stress (impedance growth \(\sim t^{\frac{1}{2}} \)) and Mechanical Stress (capacity loss) models simultaneously fit to accelerated cycling data.

Calendar life and Cycle life testing being done on these cells in parallel would allow accurate separation of Mechanical and Thermal Stress contributions.

SCE Data presented at EVS23 by Loic Gaillac

* INL Data: 10s resistance scaled to 18s.
This Mechanical Stress (capacity loss) model fails to capture apparent accelerating trend.

Small accelerating influence predicted by model due to increase of ΔSOC cycling severity with capacity loss.

Impedance contributions to apparent capacity (underdischarging & undercharging) investigated as accelerating trend but effects found negligible.
Capacity loss (cycling) has appreciable impact on measured discharge resistance growth.

INL Data: 10s resistance scaled to 18s.
Developing Simplified Cost Model

Estimating Manufacturer Pack Cost

- Battery cost estimates from EPRI-led HEV study as original source\(^1\)
- EPRI HEV Cost model used for NREL’s EVS-22 paper on PHEV Cost Benefit Analysis\(^2\)
- DOE-sponsored TIAX study reviewed cost details of two li-ion cathodes (NCA and NCM) manufacturing\(^3\)
- Modified fixed costs to include a per cell component based on TIAX estimates this study

Simplified Pack Cost Model

\[
$/\text{pack} = 11.1*kW + 224.1*kWh + 4.53*\text{BSF} + 340
\]

Nominal Energy (kWh)	**P/E**	**Detailed Model: 3**	**Detailed Model: 3**	**Simple Model: 1.2**
6.88 | 5.8 | $3120 | $2600 | $2660
8.46 | 4.7 | $3510 | $2860 | $3020
11.46 | 3.5 | $4290 | $3500 | $3680

NCA - Nickel Cobalt Alumina; NCM- Nickel Cobalt Manganese

Summary of Components for Performance/Life/Cost Modeling Effort

- Developed performance model representative of Saft VL41M data
- Employed simplified cost model based on kWh, P/E ratio and cell number connected in series (BSF) representative for NCA chemistry
- Life model representative of hypothetical design:
 - Mechanical Stress
 » fit with SCE capacity loss
 - Thermal Stress
 » using TLVT impedance growth method
Preliminary Trade-off Study – Approach

• Parametric study on number of cells connected in series (BSF), cell capacity, and electrode thickness
 — Calculated BOL and EOL (15 years @ 35C; 5,000 CD cycles; 300,000 CS cycles)† characteristics

As electrode thickness varies, cell dimensions vary to provide equivalent total energy for each constant energy scenario

Electrode impedance $\propto \frac{\delta}{A}$
Electrode capacity $\propto \delta \times A$

†USABC PHEV Battery Test Manual
CD: Charge Depleting; CS: Charge Sustaining
Power and Energy Margin With Respect to USABC Hybrid Pulse Power Characterization Testing

![Graph showing discharge and charge power with energy margin and power margin annotations.]
Beginning of Life: Energy and Power Margin

Rel Total Energy=1 and Rel Electrode Thickness=1 is baseline VL41M design with BSF = 44

- USABC energy & power margin both increased with:
 - Increased total energy (# cells or cell capacity)
 - Decreased electrode thickness (more power)

- Cell capacity has negligible influence on energy & power margin
Beginning of Life: Cost

- Cell capacity, electrode thickness, number of cells in series all have strong influence on cost

Observations

→ Using the largest capacity cell results in pack ~$310 cheaper than the smallest capacity cell.

→ Use largest capacity cell possible that still meets pack voltage constraints.
Combined Cycling + Calendar Scenario

Energy Margin

• End of Life energy margin calculated at
 — 5000 CD cycles; 300,000 CS cycles; 15 years at 35°C

Energy Margin
(for 41 Ah cell)

These thick electrode designs with smaller plate area have too small an energy window (power-limited) at EOL and cannot meet life goal.

Energy Margin: Amount of Power left above the EOL requirements
• End of Life power margin calculated at
 — 5000 CD cycles; 300,000 CS cycles; 15 years at 35°C

• All designs have excess power margin at beginning of life.
• The ideal (least expensive) design will have zero power & energy margin at end of life.
Combined Cycling + Calendar Scenario
Zero Energy/Power Margin Designs at End of Life

- Designs on this line have zero margin at end of life
Combined Cycling + Calendar Scenario
Impact of Design Options on Pack Cost

Amongst these “zero margin” designs, the highest P/E design is cheapest.

Observations:
- Battery packs should be designed with minimal energy content that satisfies life goals.
- Increasing P/E is effective in increasing useable energy.
• Modifications to the cell design attributes can be used to reduce cost and satisfy USABC requirements

• Is “design for degradation” the best approach?

• Why 20%-30% degradation?

• Linked performance/life/cost model tied to vehicle simulation could be used to evaluate the tradeoff between upfront cost of battery with margin vs. degraded long-term fuel savings for a “just enough” battery design
Lower upfront costs may lead to greater market share. Greater market share with slightly lower fuel savings may translate to more fleet fuel savings and volume cost reductions sooner.
Beginning of Life and End of Life Vehicle Simulations

- Vehicle simulation with 20% degradation in both Energy and Power,
 - CD range decreases from 22 to 17 miles
 - Over 30 miles, EOL fuel consumption is double BOL consumption however EOL consumption still only a fraction of HEV consumption

BOL cost savings likely more valuable than EOL fuel savings: $1000 in year 1 ≠ $1000 over 15 yrs

Battery life model linked with vehicle simulation will provide better estimate of change in operation and savings over vehicle lifetime
Summary and Conclusion

- NREL is developing tools, algorithms, and a framework for battery investigators to identify battery design options for PHEVs with trade-offs in mind.

- It is possible to decrease initial battery cost with better understanding of life and performance impacts of design and usage pattern.

- First principals performance model clarifies degradation contributions due to cycling and calendar aspects.

- Alternative designs may accelerate market growth.
Next Steps

• Collaborate with battery providers and OEMs to refine the cost/life/performance models
• Develop performance models for other chemistries
• Incorporate climatic variation effects
 — Cold → performance reduction
 — Hot → calendar life
• Link vehicle simulation, performance, and life models to evaluate options
 — Designed for end of life – no change in performance
 — Designed for beginning of life with change in performance
• Employ optimization and robust design tools to identify key design attributes

Work with others to demonstrate usefulness of this trade-off analysis framework
Vision: How This Battery Trade-off Framework May be used by Companies with Confidential Models/Data?

- Exchange of model parameters and results through secure Internet firewalls.
- Confidential data/models maintained internally, key results shared to formulate optimum solutions.