Battery Choices and Potential Requirements for Plug-In Hybrids

Plug-In Hybrid Electric Truck Workshop
Hybrid Truck Users Forum
Los Angeles, CA
February 13, 2007

Ahmad Pesaran, Ph.D.
National Renewable Energy Laboratory

With support from
U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy
FreedomCAR and Vehicle Technologies Program
NREL’s Plug-in Hybrid R&D Activities

- **Battery Level**
 - R&D support to developers
 - Testing and evaluation – Sprinter PHEV testing
 - Thermal characterization and design
 - Requirement analysis in support of EES Tech Team

- **Vehicle Level**
 - Simulated real-world PHEV fuel economy
 - Support development of test procedures and MPG reporting
 - Route-based control
 - PHEV design cost-benefit analysis

- **Utility Level**
 - Assessment of PHEV impacts on utilities
 - Exploring synergies between PHEVs and wind power
 - V2G opportunities for PHEVs in regulation services

- **National Level**
 - Benefits assessment - oil use and emissions
 - Renewable community – linking PHEV to homes/communities

- **Analysis support to DOE, OEMs, and others**
 - Working to identify and overcome barriers to PHEV adoption
NREL’s Heavy Hybrid Vehicle Activities

• Technical Monitor of DOE’s Advanced Heavy Hybrid Propulsion System Program
 — GM – Allison Transmission (Heavy hybrid transit bus application & prototype validation) – parallel hybrid
 — Eaton/International (Class 4-6 vehicle applications & prototype validations) – parallel hybrid
 — Oshkosh (Class 7-8 vehicle application & prototype validation) – Series hybrid; extremely demanding duty-cycle
 — Caterpillar (Focus on thermoelectric waste heat recovery)

• Technical Contributions
 — ReFUEL Lab (Chassis and engine dynamometers)
 » Vehicle fuel economy and emissions testing
 » Vehicle drive cycle characterization and analysis
 — Thermal testing, analysis, and management
 » Power electronics
 » Batteries and ultracapacitors
Topics of This Presentation

• Battery Technologies for PHEVs
 — State-of-the-art
 — Advances

• Impact of Vehicle Attributes on Battery
 — EV Range
 — System Architecture
 — Driving cycles and profiles

• Concluding Remarks
Key Messages

- There is a broad spectrum of PHEV designs leading to different battery requirements

- Batteries are available that could meet the energy and power demands for PHEVs, but cost and limited cycle/calendar life are major barriers for affordable PHEV introduction:
 - NiMH could do the job – volume and weight are concerns
 - Li-ion are potentially best candidates
 - All li-ions are not “created equal”

- For heavy-duty PHEV, combining low-cost, high-energy batteries (such as NaNiCl or ZnAir) with high power ultracapacitors may have potential

- There is a trade of between high fuel economy and emissions benefits
 - Engine-off during EV operation reduces the petroleum consumption
 - Too many engine-off cycles lead to cold starts and higher emissions

- PHEVs are the most-cost-effective choice in a scenario of projected low battery costs and high fuel costs.
Batteries in Current PHEVs

- **Johnson Controls / Varta**
- **Johnson Controls / SAFT**
- **Valence Technology**

NiMH

- **Electro Energy Inc.**
- **Kokam**

Co/Ni based Li-Ion

- **A123 Systems**

Iron phosphate based Li-Ion
High Power Battery and Ultracapacitor Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VRLA</th>
<th>NiMH</th>
<th>Li Ion</th>
<th>Ultracap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell configuration</td>
<td>Parallel plates; spirally wound cylindrical</td>
<td>Spirally wound cylindrical; parallel plates</td>
<td>Spirally wound cylindrical & elliptic</td>
<td>Spirally wound cylindrical & elliptic</td>
</tr>
<tr>
<td>Nominal cell voltage (V)</td>
<td>2</td>
<td>1.2</td>
<td>3.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Battery electrolyte</td>
<td>Acid</td>
<td>Alkaline</td>
<td>Organic</td>
<td>Organic</td>
</tr>
<tr>
<td>Specific energy, Wh/kg</td>
<td>25</td>
<td>40</td>
<td>60 to 80</td>
<td>5</td>
</tr>
<tr>
<td>Battery/Module specific power, 10 sec, W/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23°C, 50% SOC</td>
<td>400</td>
<td>1300</td>
<td>3000</td>
<td>>3000</td>
</tr>
<tr>
<td>-20°C, 50% SOC</td>
<td>250</td>
<td>250</td>
<td>400</td>
<td>>500</td>
</tr>
<tr>
<td>Charge acceptance, 10 sec. W/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23°C, 50% SOC</td>
<td>200</td>
<td>1200</td>
<td>2000</td>
<td>>3000</td>
</tr>
<tr>
<td>2010 Projected Cost >100,000 per year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/kWh, Module</td>
<td>100.00</td>
<td>500.00</td>
<td>700.00</td>
<td>20,000.00</td>
</tr>
<tr>
<td>$/kWh, Full pack</td>
<td>140</td>
<td>600</td>
<td>1100</td>
<td>25000</td>
</tr>
<tr>
<td>$/kW, pack</td>
<td>9.00</td>
<td>18.00</td>
<td>22.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>Good</td>
<td>Moderate</td>
<td>Good</td>
<td>Very Good</td>
</tr>
<tr>
<td>Thermal managements requirements</td>
<td>Moderate</td>
<td>High</td>
<td>Moderate</td>
<td>Light</td>
</tr>
<tr>
<td>Electrical control</td>
<td>Light</td>
<td>Light</td>
<td>Tight</td>
<td>Tight</td>
</tr>
</tbody>
</table>

Source: M. Anderman, AABC-04 Tutorial, San Francisco, CA June 2004
Qualitative Comparison of Existing Energy Battery Technologies for PHEVs

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Lead Acid</th>
<th>NiMH</th>
<th>Li-Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Volume (lit)</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Capacity/Energy (kWh)</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Discharge Power (kW)</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Regen Power (kW)</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Cold-Temperature (kWh & kW)</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Shallow Cycle Life (number)</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Deep Cycle Life (number)</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Calendar Life (years)</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Cost ($/kW or $/kWh)</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Safety- Abuse Tolerance</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Maturity - Technology</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Maturity - Manufacturing</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

Key
- **Poor**
- **Fair**
- **Good**
NiMH has Matured in Power and Energy

Specific energy ranging from 45 Wh/kg to 80 Wh/kg depending on the power capability.

Source: Reproduced from A. Fetcenko (Ovonic Battery Company) from the 23rd International Battery Seminar & Exhibit, March 13-16, 2006, Ft. Lauderdale, FL.
NiMH technology is forecasted to have a major market share in hybrid market until Li-Ion takes off

Panasonic

6.5 Ah Battery for Toyota Prius

Sanyo

6.5 Ah HEV cells in Ford Escape HEV
Source: Sanyo website news

Cobasys

EV module (left) and 42V HEV batteries

Electro Energy

Pack with bipolar Cells/Modules

Bipolar pack in a Plug-In Prius
Source: Images provided by James Landi of Electro Energy Inc.

Forecast

Source: C. Pillot (Avicenne) from the 23rd International Battery Seminar & Exhibit, March 13-16, 2006, Ft. Lauderdale, FL.
Li-Ion Technology – Diverse Chemistry & Opportunity

Voltage ~3.2-3.8 V
Cycle life ~1000-3000 Wh/kg >150 Wh/l >400
Discharge -30 to 60°C
Shelf life <10%/year

Many anodes are possible
- Carbon/Graphite
- Titanate (Li$_4$Ti$_5$O$_{12}$)
- Titanium oxide based
- Tin Oxide based
- Tungsten oxide

Many cathodes are possible
- Cobalt oxide
- Manganese oxide
- Mixed oxides with Nickel
- Iron phosphate
- Vanadium oxide based

Many electrolytes are possible
- LiPF$_6$ based
- LiBF$_4$ based
- Various solid state electrolytes
- Polymer electrolytes
 (+ some salts)

Characteristics of Cathode Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Δx</th>
<th>mAh/g</th>
<th>avg V</th>
<th>Wh/kg</th>
<th>Wh/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCoO$_2$</td>
<td>0.55</td>
<td>151</td>
<td>4.00</td>
<td>602</td>
<td>3073</td>
</tr>
<tr>
<td>LiNi${0.8}$Co${0.15}$Al$_{0.05}$O$_2$</td>
<td>0.7</td>
<td>195</td>
<td>3.80</td>
<td>742</td>
<td>3784</td>
</tr>
<tr>
<td>LiMn$_2$O$_4$</td>
<td>0.8</td>
<td>119</td>
<td>4.05</td>
<td>480</td>
<td>2065</td>
</tr>
<tr>
<td>LiMn${1/3}$Co${1/3}$Ni$_{1/3}$O$_2$</td>
<td>0.55</td>
<td>153</td>
<td>3.85</td>
<td>588</td>
<td>2912</td>
</tr>
<tr>
<td>LiFePO$_4$</td>
<td>0.95</td>
<td>161</td>
<td>3.40</td>
<td>549</td>
<td>1976</td>
</tr>
</tbody>
</table>

*Typically diluted with 10% carbon for electronic conductivity

- Cobalt oxide most widely used in consumer cells but recently too expensive
- LiMn$_{1/3}$Co$_{1/3}$Ni$_{1/3}$O$_2$ newer than LiNiCoO$_2$
- Mn$_2$O$_4$ around for many years – not competitive for consumer – good for high power
- Oxide cathodes with cobalt are more energetic
- LiFePO$_4$ – very new – too low energy density for consumer electronics
 - safe on overcharge but need electronics to prevent under-voltage
 - may require larger number of cells due to lower cell voltage

Many Commercial Oxide Based Li-Ion Batteries are Available

- Johnson Control - Saft
- LG Chem
- Electrovaya
- Kokam
- SK Corp
- NEC Lamilion Energy
- GS Yuasa
- Sony
- Sanyo
- Samsung
- Panasonic
- Nissan
- Lishen
- Pionics
- Altair Nanotechnologies
- Chinese companies
Lithium Iron Phosphate (LiFePO\(_4\)) Cathodes

+ High stability and non-toxic
+ Good specific capacity
+ Flat voltage profile
+ Cost effective (less expensive cathode)
+ Improved safety
 – Lower voltage than other cathodes
 – Poor Li diffusion (\(D_{Li} \approx 10^{-13} \text{ cm}^2/\text{Sec}\))
 – Poor electronic conductivity (\(\approx 10^{-8} \text{ S/cm}\))

• Approach many use to overcome poor characteristics
 — Use nano LiFePO\(_4\) – carbon composite
 — Use larger number of cells
 — Nano structured materials

Source: Various papers from the 23rd International Battery Seminar & Exhibit, March 13-16, 2006, Ft. Lauderdale, FL.

Source: On line brochures from Valence Technolo http://www.valence.com/ucharge.asp
Improvements in Iron Phosphate Li-ion Batteries

Valence Technology 18650 Cells
100 Wh/kg in cell 84 Wh/kg in U Charge module

<table>
<thead>
<tr>
<th>Specifications</th>
<th>U1-12XP</th>
<th>U24-12XP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>12.8 V</td>
<td>12.8 V</td>
</tr>
<tr>
<td>Capacit (C/5)</td>
<td>40 Ah</td>
<td>100 Ah</td>
</tr>
<tr>
<td>Specific energy</td>
<td>84 Wh/kg</td>
<td>82 Wh/kg</td>
</tr>
<tr>
<td>Energy density</td>
<td>110 Wh/l</td>
<td>126 Wh/l</td>
</tr>
<tr>
<td>Standard Discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. cont. current</td>
<td>80 A</td>
<td>150 A</td>
</tr>
<tr>
<td>Max. 30 sec. pulse</td>
<td>120 A</td>
<td>300 A</td>
</tr>
<tr>
<td>Cut-off voltage</td>
<td>10 V</td>
<td>10 V</td>
</tr>
</tbody>
</table>

The battery with standard lead acid battery form factor includes a battery management system.

A123 Systems with 26650 Cells
100 Wh/kg

Based on: Novel nano scale doped phosphate active materials (pat. pending)
Low impedance cell design and electrolyte (pat. pending)

Source: Andrew Chu (A123 Systems) from the 23rd International Battery Seminar & Exhibit, March 13-16, 2006, Ft. Lauderdale, FL.
Improving Li-Ion Batteries with Titanate Anode

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Traditional Li-Ion Batteries</th>
<th>Li Ion Batteries Using Altairnano materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anode</td>
<td>Graphite</td>
<td>Lithium titanate spinel</td>
</tr>
<tr>
<td>Cathode</td>
<td>Cobaltate</td>
<td>Nano-Structured oxides</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge rate</td>
<td>½ C</td>
<td>20 C and greater</td>
</tr>
<tr>
<td>Discharge rate</td>
<td>4 C</td>
<td>40 C and greater</td>
</tr>
<tr>
<td>Cycle life</td>
<td>300-500 cycles</td>
<td>9,000 cycles (full DOD)</td>
</tr>
<tr>
<td>Calendar life</td>
<td>2-3 years</td>
<td>10-15 years</td>
</tr>
</tbody>
</table>

Altair Nanotechnologies Inc.
- Improved low temperature performance
- Faster charge acceptance
- Longer cycle life
- 80-100 Wh/kg
- 2000-4000 W/kg

~90% SOC of RT Cell at -30°C and 1-2C Charge Rate!
Exciting Times for Li-Ion Batteries

• New Cathodes
 — Lower cost
 — Higher power
 — Better safety
 — Improved life

• New Anodes
 — Faster charge rate
 — Improved life

• New Electrolyte
 — Improved safety
 — Improved low temperature performance

• New Separator
 — Lower cost
 — Improved safety

Main barrier is cost!
Other Energy Storage Potential Choices for Plug-In Hybrid Electric Trucks (PHET)

- Sodium Nickel Chloride battery (NaNiCl) – Zebra
 - High energy density
 - Low power density
 - Inexpensive
- Zinc Air battery/fuel cell (ZnAir)
 - Types
 » The “Refuellable” ZnAir Fuel Cell
 » The “Mechanically Rechargeable” ZnAir Fuel Cell
 » The Electrically Rechargeable ZnAir Battery
 - High energy density
 - Low power density
 - Inexpensive
- Ultracapacitors
 - High power density
 - Low energy density
 - Expensive now, could become lower in cost
- Combination of ultracapacitors with NaNiCl or ZnAir
 - The need for DC/DC converter may increase cost, volume/mass
Battery Cycle Life Depends on State of Charge Swing

- PHEV battery likely to deep-cycle each day driven: 15 yrs equates to 4000-5000 deep cycles
- Also need to consider combination of high and low frequency cycling

Need to obtain similar data for state-of-the-art batteries

Source: Christian Rosenkranz (Johnson Controls) at EVS 20, Long Beach, CA, November 15-19, 2003
Battery Sizing Depends on:
EV range, vehicle (mass, aerodynamic, etc.), drive cycle, strategy

Equi EV range

- kWh/mi (from simulation)
- kWh usable
- SOC window
 - kWh total
- kW_{motor} (from simulation)
- Performance constraints
 - kW_{engine}

kWh usable → kWh total
SOC window → kWh total
KWh/mi → kWh usable

Benefit of plugging-in

Total MPG Benefit

Benefit of hybridization

DOH = degree of hybridization

Battery Usage in EVs, HEVs, and PHEVs

- **HEV**
 - Charged, not used
 - Used frequently in CS
 - Used sometimes in CS
 - 0.2-0.4 kWh CS
 - 1-2 kWh total
 - Uncharged capacity

- **PHEV**
 - Charged and used (CD)
 - 5-10 kWh
 - 30-40 kWh

- **EV**
 - Charged and used (CD)

kWh: Battery energy for midsize car

CS: Charge Sustaining

CD: Charge Depleting

NREL National Renewable Energy Laboratory
Alternative PHEV Design Strategies: Charge Depleting EV vs. Charge Depleting HEV

- Engine turns on when battery reaches low state of charge
- Requires high power battery and motor

Charge-Depleting EV (All-Electric)

Source: Tony Markel and Andrew Simpson (NREL), AABC-06, Baltimore, MD, May 19, 2006
Alternative PHEV Design Strategies: Charge Depleting EV vs. Charge Depleting HEV

- Engine turns on when power exceeds battery power capability
- Engine only provides load that exceeds battery power capability

Charge Depleting HEV (Blended)

Source: Tony Markel and Andrew Simpson (NREL), AABC-06, Baltimore, MD, May 19, 2006
Example of Battery Requirements for Plug-in Hybrid Vehicles

<table>
<thead>
<tr>
<th>Characteristics at EOL (End of Life)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum System Production Price @ 100k units/yr</td>
</tr>
<tr>
<td>Calendar Life, 40°C</td>
</tr>
<tr>
<td>Maximum System Weight</td>
</tr>
<tr>
<td>Maximum System Volume</td>
</tr>
<tr>
<td>SOC Range</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charge Depleting HEV Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Equivalent Electric Range</td>
</tr>
<tr>
<td>Available Energy for CD Mode, 10 kW Rate</td>
</tr>
<tr>
<td>CD Life / Discharge Throughput</td>
</tr>
<tr>
<td>Suggested Total Energy (at 10 kW rate)</td>
</tr>
<tr>
<td>Maximum System Recharge Rate at 30°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charge Sustaining HEV Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Pulse Discharge Power (10 sec)</td>
</tr>
<tr>
<td>Peak Regen Pulse Power (10 sec)</td>
</tr>
<tr>
<td>Available Energy for CS (Charge Sustaining) Mode</td>
</tr>
<tr>
<td>Minimum Round-trip Energy Efficiency (USABC HEV Cycle)</td>
</tr>
<tr>
<td>Cold cranking power at -30°C, 2 sec - 3 Pulses</td>
</tr>
<tr>
<td>CS HEV Cycle Life, 50 Wh Profile</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Current (10 sec pulse)</td>
</tr>
<tr>
<td>Maximum Operating Voltage</td>
</tr>
<tr>
<td>Minimum Operating Voltage</td>
</tr>
<tr>
<td>Maximum Self-discharge</td>
</tr>
<tr>
<td>Survival Temperature Range</td>
</tr>
<tr>
<td>Unassisted Operating & Charging Temperature Range</td>
</tr>
</tbody>
</table>
Battery Energy Requirements for Heavy-Duty PHET

- The energy efficiency of light-duty vehicles are about 200 to 400 Whr/mile
 - 5 to 12 kWhr battery for 30 mile
 - 2 Second power: 30 to 60 kW
 - Power to energy ratio (P/E) from 2 to 15

- Sprinter van delivery PHEV is estimated to consume about 600 Whr/mile in charge depleting (CD) mode

- Heavy-duty trucks could consume from 1000 to 2000 Whr/mile
 - 30 to 60 kWh battery for 30 mile range
 - Some may require additional kWh energy during idling or vocational operation
 - Power need: 50 to 150 kW or even more
 - Volume, weight, and cost are big issues
 - Thermal management is a concern
Battery Pack Packaging?

• Many small cells
 — Low cell cost (commodity market)
 — Improved safety (faster heat rejection)
 — Many interconnects
 — Low weight and volume efficiency
 — Reliability (many components, but some redundancy)
 — Higher assembly cost
 — Electrical management (costly)
 — Life?

• Fewer large cells
 — Higher cost
 — Increased reliability
 — Lower assembly cost
 — Higher weight and volume efficiency
 — Thermal management (tougher)
 — Safety ??
 — Better Reliability (lower number of components)
 — Life?
Concluding Remarks

• Batteries with low power to energy ratios are needed for PHEVs and PHETs

• Widening of the energy storage system usable state of charge window while maintaining life will be critical for reducing system cost and volume, but could decrease the life

• A blended operating strategy as opposed to an all electric range focused strategy may provide some benefit in reducing cost and volume while maintaining petroleum consumption benefits

• The key barrier to commercialization of PHEVs and PHETs are battery life, packaging, and cost.
Acknowledgments

• DOE Program Support
 – Dave Howell
 – Tien Duong

• Technical Support
 – Tony Markel (NREL)