Battery Choices for Different Plug-in HEV Configurations

Plug-in HEV Forum and Technical Roundtable
South Coast Air Quality Management District
Diamond Bar, CA

July 12, 2006

Ahmad Pesaran, Ph.D.
National Renewable Energy Laboratory

With support from
FreedomCAR and Vehicle Technologies Program
Office of Energy Efficiency and Renewable Energy
U.S. Department of Energy
NREL’s Plug-in HEV R&D Activities

• Battery Level
 — R&D support to developers
 — Testing and evaluation – Sprinter PHEV testing
 — Thermal characterization and design
 — Supporting requirement analysis and development

• Vehicle Level
 — Real-world PHEV simulations - fuel economy and recharging
 — Support development of test procedures for PHEVs and MPG reporting
 — Evaluation of alternative PHEV design strategies
 » all-electric vs. blended operation
 — PHEV design cost-benefit analysis

• Utility Level
 — Assessment of PHEV impacts on utilities
 — Exploring synergies between PHEVs and wind power
 — V2G opportunities for PHEVs in regulation services

• National Level
 — Benefits assessment - oil use and emissions
 — Renewable community – linking PHEV to renewable

• Analysis support to DOE, OEMs, and others
 — Working to identify and overcome barriers to PHEV adoption

Secretary of Energy visiting NREL on 7/7/06 for ribbon cutting of the new S&T Facility and then discussing plug-in hybrids with EnergyCS & Hymotion
Topics of the Presentation

• Battery Technologies for PHEVs
 — State-of-the-art
 — Advances
• Impact of Vehicle Attributes on Battery
 — EV Range
 — System Architecture
 — Driving cycles and profiles
• Concluding Remarks and a Few Thoughts
Key Messages

• There is a broad spectrum of HEV-PHEV designs leading to different battery requirements.
• Batteries are available that could meet the energy and power demands for PHEVs, but cost and limited cycle/calendar life are major barriers for affordable PHEV introduction.
 • NiMH could do the job
 • Li-ion are potentially best candidates
 • All Li-ions are not “created equal”
• There are emission benefits with PHEVs, but the difference between pure EV range and blended EV range impacts may need to be understood
• PHEVs are the most cost-effective choice in a scenario of projected (low) battery costs and high fuel costs.
Batteries in Current PHEVs

- Varta: NiMH
- Electro Energy Inc.: Co/Ni based Li-Ion
- Johnson Controls/SAFT: Co/Ni based Li-Ion
- Kokam: Iron phosphate based Li-Ion
- Valence Technology: Iron phosphate based Li-Ion
- A123 Systems: Iron phosphate based Li-Ion
High Power Battery and Ultracapacitor Characteristics for Hybrid Vehicles

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VRLA</th>
<th>NiMH</th>
<th>Li Ion</th>
<th>Ultracap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell configuration</td>
<td>Parallel plates; spirally wound cylindrical</td>
<td>Spirally wound cylindrical; parallel plates</td>
<td>Spirally wound cylindrical & elliptic</td>
<td>Spirally wound cylindrical & elliptic</td>
</tr>
<tr>
<td>Nominal cell voltage (V)</td>
<td>2</td>
<td>1.2</td>
<td>3.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Battery electrolyte</td>
<td>Acid</td>
<td>Alkaline</td>
<td>Organic</td>
<td>Organic</td>
</tr>
<tr>
<td>Specific energy, Wh/kg</td>
<td>25</td>
<td>40</td>
<td>60 to 80</td>
<td>5</td>
</tr>
<tr>
<td>Battery/Module specific power, 10 sec, W/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23°C, 50% SOC</td>
<td>400</td>
<td>1300</td>
<td>3000</td>
<td>>3000</td>
</tr>
<tr>
<td>-20°C, 50% SOC</td>
<td>250</td>
<td>250</td>
<td>400</td>
<td>>500</td>
</tr>
<tr>
<td>Charge acceptance, 10 sec. W/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23°C, 50% SOC</td>
<td>200</td>
<td>1200</td>
<td>2000</td>
<td>>3000</td>
</tr>
<tr>
<td>2010 Projected Cost >100,000 per year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/kWh, Module</td>
<td>100.00</td>
<td>500.00</td>
<td>700.00</td>
<td>20,000.00</td>
</tr>
<tr>
<td>$/kWh, Full pack</td>
<td>140</td>
<td>600</td>
<td>1100</td>
<td>25000</td>
</tr>
<tr>
<td>$/kW, pack</td>
<td>9.00</td>
<td>18.00</td>
<td>22.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>Good</td>
<td>Moderate</td>
<td>Good</td>
<td>Very Good</td>
</tr>
<tr>
<td>Thermal managements requirements</td>
<td>Moderate</td>
<td>High</td>
<td>Moderate</td>
<td>Light</td>
</tr>
<tr>
<td>Electrical control</td>
<td>Light</td>
<td>Light</td>
<td>Tight</td>
<td>Tight</td>
</tr>
</tbody>
</table>

Source: M. Anderman, AABC-04 Tutorial, San Francisco, CA June 2004
Qualitative Comparison of Large-Format Battery Technologies for PHEVS

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Lead Acid</th>
<th>NiMH</th>
<th>Li-Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Volume (lit)</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Capacity/Energy (kWh)</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Discharge Power (kW)</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Regen Power (kW)</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Cold-Temperature (kWh & kW)</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Shallow Cycle Life (number)</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Deep Cycle Life (number)</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Calendar Life (years)</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Cost ($/kW or $/kWh)</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Safety- Abuse Tolerance</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Maturity - Technology</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Maturity - Manufacturing</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
</tbody>
</table>

Key
- Poor
- Fair
- Good

- **Qualitative Comparison of Large-Format Battery Technologies for PHEVS**

United States Department of Energy
National Renewable Energy Laboratory

8

- **NREL**
 - National Renewable Energy Laboratory
NiMH has Matured in Power and Energy

Specific energy ranging from 45 Wh/kg to 80 Wh/kg depending on the power capability.

Source: Reproduced from A. Fetcenko (Ovonic Battery Company) from the 23rd International Battery Seminar & Exhibit, March 13-16, Ft. Lauderdale, FL.
NiMH batteries are forecasted to dominate the HEV market for a while

Panasonic
6.5 Ah Battery for Toyota

Sanyo
6.5 Ah HEV cells in Ford Escape HEV
Source: Sanyo website news

Cobasys
EV module (left) and 42V HEV batteries

Electro Energy
Pack with bipolar Cells/Modules
Bipolar pack in a Plug-In Prius

Source: C. Pillot (Avicenne) from the 23rd International Battery Seminar & Exhibit, March 13-16, Ft. Lauderdale, FL.

Source: Images provided by James Landi of Electro Energy Inc.
Li Ion Technology – Diverse Chemistry & Opportunity

Many anodes are possible
- Carbon/Graphite
- Titanate (Li_4Ti_5O_12)
- Titanium oxide based
- Thin Oxide based
- Tungsten oxide

Many electrolytes are possible
- LiPF_6 based
- LiBF_4 based
- Various solid electrolytes
- Polymer electrolytes

Many cathodes are possible
- Cobalt oxide
- Manganese oxide
- Mixed oxides with Nickel
- Iron phosphate
- Vanadium oxide based

Voltage ~3.2-3.8 V
Cycle life ~1000-3000 Wh/kg >150
Wh/l >400
Discharge -30 to 60°C
Shelf life <10%/year

Characteristics of Cathode Materials

Theoretical values for a battery system relative to graphite anode and LiPF₆ electrolyte

<table>
<thead>
<tr>
<th>Material</th>
<th>Δx</th>
<th>mAh/g</th>
<th>avg V</th>
<th>Wh/kg</th>
<th>Wh/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCoO₂</td>
<td>0.55</td>
<td>151</td>
<td>4.00</td>
<td>602</td>
<td>3073</td>
</tr>
<tr>
<td>LiNi₀.₈Co₀.₁₅Al₀.₅O₂</td>
<td>0.7</td>
<td>195</td>
<td>3.80</td>
<td>742</td>
<td>3784</td>
</tr>
<tr>
<td>LiMn₂O₄</td>
<td>0.8</td>
<td>119</td>
<td>4.05</td>
<td>480</td>
<td>2065</td>
</tr>
<tr>
<td>LiMn₁/₃Co₁/₃Ni₁/₃O₂</td>
<td>0.55</td>
<td>153</td>
<td>3.85</td>
<td>588</td>
<td>2912</td>
</tr>
<tr>
<td>LiFePO₄*</td>
<td>0.95</td>
<td>161</td>
<td>3.40</td>
<td>549</td>
<td>1976</td>
</tr>
</tbody>
</table>

*Typically diluted with 10% carbon for electronic conductivity

Lower potential can provide greater stability in electrolyte
Cobalt oxide most widely used in consumer cells but recently too expensive
LiMn₁/₃Co₁/₃Ni₁/₃O₂ newer than LiNiCoO₂
Mn₂O₄ around for many years – not competitive for consumer – good for high power
LiFePO₄* – very new – too low energy density for consumer electronics
 - safe on overcharge but need electronics to prevent low voltage
 - may require larger number of cells due to lower voltage

Nano-materials in Li-Ion Batteries Improve Performance & Life

- Easier diffusion of Li-ion into and out of the host
 - High specific capacity at high rate
- Increased electrode surface area and thus higher rates
- Stable 3 dimensional host materials
- Small dimensional change as Li-ions are cycled in and out
 - Improved cycling life due to less structural change
 - Low irreversible capacity loss
- Exhibit of both faradaic and non-faradaic capacity
 - Higher capacity retention
- Enabling new materials

Source: Excerpts A. Singhal (NEI Corporation) and E. House (Altair Nanotechnologies) from the 23rd International Battery Seminar & Exhibit, March 13-16, Ft. Lauderdale, FL.
Many Oxide Based Li-Ion Batteries are Available

- Johnson Control
- Saft
- LG Chem
- Kokam
- Sony
- Sanyo
- Samsung
- Panasonic
- Electrovaya
- NEC Lamilion Energy
- Nissan
- Lishen
- Pionics
- SK Corp
- GS Yuasa
- Altair Nanotechnologies
Lithium Iron Phosphate (LiFePO$_4$) Cathodes

+ High stability and non-toxic
+ Good specific capacity
+ Flat voltage profile
+ Cost effective (less expensive cathode)
+ Improved safety
- Lower voltage than other cathodes
- Poor Li diffusion ($D_{Li} \sim 10^{-13}$ cm2/Sec)
- Poor electronic conductivity ($\sim 10^{-8}$ S/cm)

• Approach many use to overcome poor characteristics
 — Use nano LiFePO$_4$ – carbon composite
 — Use larger number of cells
 — Nano structured materials

Source: Various papers from the 23rd International Battery Seminar & Exhibit, March 13-16, Ft. Lauderdale, FL.
Improvements in Iron Phosphate Li-ion Batteries

Valence Technology 18650 Cells
100 Wh/kg in cell 84 Wh/kg in U Charge module

The battery with standard lead acid battery form factor includes a battery management system.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>U1-12XP</th>
<th>U24-12XP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>12.8 V</td>
<td>12.8 V</td>
</tr>
<tr>
<td>Capacit (C/5)</td>
<td>40 Ah</td>
<td>100 Ah</td>
</tr>
<tr>
<td>Specific energy</td>
<td>84 Wh/kg</td>
<td>82 Wh/kg</td>
</tr>
<tr>
<td>Energy density</td>
<td>110 Wh/l</td>
<td>126 Wh/l</td>
</tr>
<tr>
<td>Standard Discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. cont. current</td>
<td>80 A</td>
<td>150 A</td>
</tr>
<tr>
<td>Max. 30 sec. pulse</td>
<td>120 A</td>
<td>300 A</td>
</tr>
<tr>
<td>Cut-off voltage</td>
<td>10 V</td>
<td>10 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Density</th>
<th>Weight to discharge @1500W</th>
<th>Safety</th>
<th>Life at 100% DoD 1C rate</th>
<th>Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>3600 W/Kg</td>
<td>0.9 lbs</td>
<td>✓</td>
<td>~7000</td>
<td>✓</td>
</tr>
</tbody>
</table>

Based on: Novel nano scale doped phosphate active materials (pat. pending)
Low impedance cell design and electrolyte (pat. pending)

A123 Systems
with 26650 Cells
100 Wh/kg

Source: Andrew Chu (A123 Systems) from the 23rd International Battery Seminar & Exhibit, March 13-16, Ft. Lauderdale, FL.

100%DOD 1C charge, 1C discharge cycling data. Using first 1000 cycles, extrapolated cycle life: ~7000 cycles.
Improving Li-Ion Batteries with Titanate Anode

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Traditional Li Ion Batteries</th>
<th>Li Ion Batteries Using Altairnano materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anode</td>
<td>Graphite</td>
<td>Lithium titanate spinel Nano-Structured oxides</td>
</tr>
<tr>
<td>Cathode</td>
<td>Cobaltate</td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge rate</td>
<td>½ C</td>
<td>20 C and greater</td>
</tr>
<tr>
<td>Discharge rate</td>
<td>4 C</td>
<td>40 C and greater</td>
</tr>
<tr>
<td>Cycle life</td>
<td>300-500 cycles</td>
<td>9,000 cycles (full DOD)</td>
</tr>
<tr>
<td>Calendar life</td>
<td>2-3 years</td>
<td>10-15 years</td>
</tr>
</tbody>
</table>

Source: E. House (Altair Nanotechnologies) from the 23rd International Battery Seminar & Exhibit, March 13-16, Ft. Lauderdale, FL.

Altaire Nanotechnologies Inc.
- Improved low temperature performance
- Faster charge acceptance
- Longer cycle life
- 80-100 Wh/kg
- 2000-4000 W/kg

~90% SOC of RT Cell at -30°C and 1-2C Charge Rate!
PHEV Battery Options

Need for higher energy than HEVs, so P/E lower

Available specific energy (Wh/kg)

Specific power (W/kg)

P/E = Power/ Energy (W/Wh)

Expanded PHEV design space

Battery Cycle Life Depends on State of Charge Swing

- PHEV battery likely to deep-cycle each day driven: 15 yrs equates to 4000-5000 deep cycles
- Also need to consider combination of high and low frequency cycling

Source: Christian Rosenkranz (Johnson Controls) at EVS 20, Long Beach, CA, November 15-19, 2003
Summary: Exciting Times for Li-Ion Batteries

- **New Cathodes**
 - Lower cost
 - Higher power
 - Better safety
 - Improved life
- **New Anodes**
 - Faster charge rate
 - Improved life
- **New Electrolyte**
 - Improved safety
 - Improved low temperature performance
- **New Separator**
 - Lower cost
 - Improved safety
Battery Definition as Key Input to Simulation

Input parameters that define the battery in **BLUE**

- **PHEV range**
- **kWh/mi** (from simulation) → **kWh usable**
- **SOC window** → **kWh total**
- **P/E ratio** → **kWmotor**
- **Performance constraints** → **kWengine**

DOH = degree of hybridization

Benefit of plugging-in

Total MPG Benefit

Benefit of hybridization

Alternative PHEV Design Strategies: All-Electric vs Blended

- Engine turns on when battery reaches low state of charge
- Requires high power battery and motor

All-Electric (Pure EV or ZEV)

Source: Tony Markel and Andrew Simpson (NREL), AABC-06, Baltimore, MD, May 19, 2006
Alternative PHEV Design Strategies:
All-Electric vs Blended

- Engine turns on when power exceeds battery power capability
- Engine only provides load that exceeds battery power capability

Blended

Source: Tony Markel and Andrew Simpson (NREL), AABC-06, Baltimore, MD, May 19, 2006
Blended vs. AER Consumption Tradeoff

- Reducing ESS power should reduce cost, mass, volume
- 50% reduction in power still provides almost all of the fuel consumption benefit

* CD = Charge Depleting

Source: Tony Markel and Andrew Simpson (NREL), AABC-06, Baltimore, MD, May 19, 2006
PHEV Battery Sizing Alternatives

Source: Tony Markel and Andrew Simpson (NREL), AABC-06, Baltimore, MD, May 19, 2006
Battery Cost Model based on P/E Ratio

Lower power to energy ratio leads to lighter, smaller, and less expensive energy storage system.

Source: Tony Markel and Andrew Simpson (NREL), AABC-06, Baltimore, MD, May 19, 2006
Battery Model (cont.) – SOC Window

Battery SOC Operating Window vs. Specified All-Electric Range

SOC operating window

Source: Andrew Simpson (NREL), Presented to FreedomCAR Vehicle System Analysis Team, March 1 2006
Real Driving Survey Data

- Provides valuable insight into travel behavior
- GPS augmented surveys supply details needed for vehicle simulation

Source: Tony Markel, Presentation at Clean City Congress and Expo, (NREL), Phenoix, AZ, May 8, 2006
• St. Louis data set includes 227 vehicles from 147 households
• Complete second by second driving profile for one day
• 8650 miles of travel
• St. Louis data set is a small sample of real data
• NPTS data is generated from mileage estimates

Source: Tony Markel, Jeff Gondor, and Andrew Simpson (NREL), Presented to FreedomCAR Vehicle System Analysis Team, June 14 2006
PHEVs Reduce Fuel Consumption By >50% On Real-World Driving Cycles

227 vehicles from St. Louis each modeled as a conventional, hybrid and PHEV

- 8647 total miles driven
- 100% replacement of sample fleet

Average Daily Costs

<table>
<thead>
<tr>
<th></th>
<th>Gas.</th>
<th>Elec.</th>
<th>¢/mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>$3.45</td>
<td>---</td>
<td>9.1</td>
</tr>
<tr>
<td>HEV</td>
<td>$2.48</td>
<td>---</td>
<td>6.5</td>
</tr>
<tr>
<td>PHEV20</td>
<td>$1.58</td>
<td>$0.48</td>
<td>5.4</td>
</tr>
<tr>
<td>PHEV40</td>
<td>$1.21</td>
<td>$0.72</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Assumes $2.41/gal and 9¢/kWh

PHEVs:
>40% reduction in energy costs
>$500 annual savings

Source: Tony Markel and Andrew Simpson (NREL), AABC-06, Baltimore, MD, May 19, 2006
Fuel Economy and All Electric Range Comparison

• Difference between rated (EPA drive cycles) and Real median values are significant for the PHEVs
 — Consumers likely to observe fuel economy higher than rated value in typical driving
 — Vehicles designed with all electric range likely to operate in a blended mode to meet driver demands

<table>
<thead>
<tr>
<th></th>
<th>Fuel Economy (mpg) **</th>
<th>All Electric Range (mi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rated</td>
<td>Median</td>
</tr>
<tr>
<td>Conventional</td>
<td>26</td>
<td>24.4</td>
</tr>
<tr>
<td>HEV</td>
<td>39.2</td>
<td>35.8</td>
</tr>
<tr>
<td>PHEV20</td>
<td>54</td>
<td>70.2</td>
</tr>
<tr>
<td>PHEV40</td>
<td>67.4</td>
<td>133.6</td>
</tr>
</tbody>
</table>

** Fuel economy values do not include electrical energy consumption

Source: Tony Markel, Jeff Gondor, and Andrew Simpson (NREL), Presented to FreedomCAR Vehicle System Analysis Team, June 14 2006
Concluding Remarks – Vehicle Simulations

• Simulations on sample real-world drive cycles suggests PHEV technology can dramatically reduce petroleum consumption.

• Benefits of a PHEV over a conventional vehicle or HEV are tied to travel behavior.

• A vehicle designed for all electric range in urban driving will likely provide only limited electric operation in real world applications
 — Still provides significant fuel displacement

• Plug-in hybrid technology can reduce petroleum consumption beyond that of HEV technology.
Concluding Remarks - Battery

• Batteries with low power to energy ratios would be needed for PHEVs

• Expansion of the energy storage system usable state of charge window while maintaining life will be critical for reducing system cost and volume

• A blended operating strategy as opposed to an all electric range focused strategy may provide some benefit in reducing cost and volume while maintaining petroleum consumption benefits

• The key remaining barriers to commercial PHEVs are battery life, packaging and cost.
Some Final Thoughts

- PHEVs reduce emissions and displace petroleum
 - Is there a need to require ZEV (pure EV) range?
 - Does blended EV range achieve both objectives?
- Does AER or ZEV need to be over a “standard” drive cycle or “real” drive cycles?
- DOE and others are focusing R&D to reduce battery cost and to improve performance and life.
- Incentives for PHEVs with larger EV range (larger battery pack) may be needed.
- Learning demonstrations are key in the short term – a good role for AQMD.
Acknowledgments

• DOE Program Support
 – Dave Howell
 – Tien Duong

• NREL Technical Support
 – Tony Markel
 – Andrew Simpson
 – Jeff Gonder