
 

 

Using the Code 

 

Three Main Steps: 
1. Set the vehicle model parameters. This is done in line 1, where a FSJVehModelsTable class is 

used for loading a number of vehicle models from a file on disk (referred to by its folder and full 
file name including extension in the String variable vehiclesFile), and then selecting one of the 
vehicle models (line 2) from among the models that have been loaded. 

2. Initializing the main simulations class FASTSimJ2 with simulation constants (as per line 3). If 
some of the simulation constants (e.g. air density) need to be changed from default values, the 
class FSJSimConstants can be instantiated separately, and the desired constant adjusted. 

3. Invoking one of the fuel economy simulations functions (line 5-11). The default function for that 
is the compact memory management run function runC(), which takes six inputs: 

• Data object for the vehicle model parameters (which had been set in lines 1 and 2). 

• Optional entry of an array of the time values for speed record (next entry in the function) of 
the vehicle. If this variable is null, then the code treats all speed entry values as being at 
exactly one second interval apart. 

• Array of vehicle speed values [mph] for the trip to be simulated. 

• Optional entry of an array of the road grade values. If this variable is null, then the code 
assumes the simulated trip is happening on a flat terrain (road grade of zero). 

• Optional entry of an array of additional auxiliary power values. While the vehicle model 
parameters already include an entry for a base value of auxiliary power (which is constant 
throughout every trip), this input variable allows for time-varying auxiliary power such as 
due to initial warm-up HVAC load during cold climate. If this variable is null, then the code 
assumes that there are no additional auxiliary loads aside from the constant value in the 
vehicle modeling parameters. 

• Initial state of charge (as a relative value between 1 for fully charged to 0 for empty). This 
value only affects electrified powertrain. Optionally, an entry of -1 can be input in this 
variable in order to invoke a specific default for different powertrain types. For BEVs and 
PHEVs, the default is that the state of charge continues from the last value that had been 
reached in a previous trip. For HEVs however, the default value is to conduct a search that 
seeks to estimate the fuel-only equivalent simulation for the trip (i.e. an estimate of the HEV 
fuel economy when there is zero net electric energy consumption in the trip) 



 

 

 

Listing of Main Classes 

Programmer’s Interface 
FSJVehicleModelParameters Data class for holding FASTSim vehicle modeling parameters 

(same 54 data values as in FASTSim-Excel) 

FSJVehModelsTable Class for reading a set of vehicle models from a text file in 
comma separated format (CSV). Once the file is read, vehicle 
modeling parameters for a vehicle models can be recalled by 
the vehicle ID in the file. 

FSJSimConstants Data class for holding default constants (e.g. air density, 
energy content in Gasoline, etc.) 

FASTSimJ2 Main simulation class that performs the fuel economy 
simulations. 

 
Component Models 
VehicleState Data class that holds details of the vehicle state (speed, 

engine-on/off, various power consumption terms.) at some 
time instant. Also includes code modules to advance the state 
by one time step increment to a new desired speed. 

FuelConverterModel Data and code modules for generic models for an ICE 

ElectMotorModel Data and code modules for generic model of an electric motor. 
 
Type Enumerations 
VehicleDriveTrainType Powertrain type {CV, HEV, PHEV or BEV} 

FuelConverterEffType Type of ICE {Spark-ignition, Atkins or Diesel 

EnergyMgmtControlStrategy Generic model for engine on/off management in HEVs & 
PHEVs 

 
Example Implementations 
FASTSimJ2GUI Windows-based graphical user interfaces that utilizes 

FASTSim-Java 

FASTSimJ2Run Example of an entry point main() function that launches a 
graphical interface or runs in batch mode (depending on 
number of entries in the command line) 

 
Further Details 

Please refer to SAE Publication 2018-01-0412: 

Karim Hamza, Kenneth P. Laberteaux, John Willard. “A Java Implementation of Future Automotive 
Systems Technology Simulator (FASTSim) Fuel Economy Simulation Code Modules,” SAE World 
Congress 2018, Detroit, MI, USA 

 


