Challenges Integrating DER

Daniel Haughton, Ph.D.
09/19/2017
APS System Overview

ITEM

- Counties: 1
- Square miles: 34,646
- Customers: 1.2 million
- Substations: 43
- Distribution line miles: 29,148
- Transmission line miles: 6,068
- Generation units: 65

STATISTICS

- Peak demand: 7,350 MW (06/20/2017)
- Previous peak: 7,236 MW (07/21/2006)
Considering Utility Models

• Deregulated market entity
 – T&D companies
 – Wholesale generation market
 – ISO/RTO for transmission, balancing and market clearing

• Vertically integrated utility
 – Generation, T&D, customer interconnection

• ‘Wires’ companies
 – T&D
System Layer DER Impacts

- Anything that happens in one area affects the others
- Generation
 - IRP and resource adequacy
 - Balancing, flexibility and ramping
 - Bulk grid /wholesale impacts
- Transmission/Sub-transmission
 - Masked load: line and transformer flows
 - N-1 reliability criteria and disturbance response
 - Operating flexibility
 - Capital infrastructure planning
- Distribution
 - Monitoring, control and operational flexibility
 - Hosting capacity, high penetration impacts
 - Reliability (voltage, thermal, protection) impacts
 - Locational value of customer technology
- Customer meter
 - Technology adoption drivers and needs
 - Retail rates and impacts
 - Changing customer behaviors
DER Interconnection Impacts

Penetration

<table>
<thead>
<tr>
<th>Impact</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal</td>
<td>Green</td>
<td>Yellow</td>
<td>Red</td>
</tr>
<tr>
<td>Voltage & PQ</td>
<td>Green</td>
<td>Yellow</td>
<td>Red</td>
</tr>
<tr>
<td>Protection</td>
<td>Green</td>
<td>Yellow</td>
<td>Red</td>
</tr>
</tbody>
</table>

- **Potential benefits**
 - Some benefits – highly dependent
 - Negative impacts
Interconnection Processes

• At the meter
 – Safety and reliability
 – Interconnection drawings, certified equipment, protection coordination
 – NEC, NESC, NFPA

• At the transformer
 – Sizing electrical equipment
 • To serve load (ie. PV production = 0 at night)
 • To back-feed the grid (production >> load)

• On the grid
 – Aggregate impacts of all interconnected systems
 – Thermal capacity of transformers, wires, devices
 – Voltage and power quality impacts
 – Protection equipment impacts
DER Integration Costs

• Hard costs
 – Infrastructure
 • Required to maintain safe, reliable operation, and maintain power quality
 – Upgrades required due to existing/emerging issues
 – DG application that causes the grid upgrade

• Soft costs
 – Application interface portal
 – Administrative and engineering resources to determine impacts and conduct analysis

• Other costs
 – Tools, technology, data
 – Operational modifications that affect other assets
- At the meter
 - Inverter, controls & communications
 - Switches
 - Protective devices

- At the transformer
 - Panel
 - Service conductor
 - Transformer

- On the grid
 - Primary conductors
 - Voltage regulating equipment
 - Substation (relays, breakers) or line (reclosers, fuses) protective devices
Other Considerations

- Integration costs are but a piece of the pie
- Utility structure
 - Vertically integrated? Wires Only? Deregulated Market?
 - Bulk grid and generation impacts
- Investment recovery mechanisms
 - Net metering?
 - Rate structure (kWh only charges)?
 - Billing reflective of infrastructure vs. energy?
- Operational impacts
 - Production alignment with consumption?
 - Challenged existing balancing and operations
 - Seasonal (spring/fall vs. summer)
 - Infrastructure deferral possible (sensitive to assumptions)
Conclusions

- Utility structure matters
- Costs of integrating DER
 - Hard costs (infrastructure)
 - Soft costs (support)
- Other considerations are significant
 - Rate structure
 - Investment recovery
 - Customer benefit and grid benefit
- DER grid benefits
 - Needs proactive planning and awareness
Peak Day Generation Stack June 19, 2016

Max = ~7400 MW @ 5:30PM

Min = ~2400 MW @ 3:30AM