Stabilizing Thin-Film Modules for Indoor Measurements

Michael G. Deceglie, Timothy J Silverman, Bill Marion, Sarah R. Kurtz

NREL PV Module Reliability Workshop
February 26, 2014

NREL/PR-5200-61480
Metastable performance in thin-films

Light exposure (1000 W m\(^{-2}\), 55°C)

Storage at room temp.

Thin-film modules change performance upon exposure to light and storage in the dark
Metastabilities vs. permanent changes

Changes are often at least partially reversible, especially upon exposure to elevated temperatures.

- Initial Norm. $P_{mp}$: 0.88
- After 165 hours at 55°C: 0.91
Metastabilities vs. permanent changes

Changes are at often at least partially reversible, especially upon exposure to elevated temperatures

- Initial Norm. $P_{mp}$: 0.88
- After 165 hours at 55°C: 0.91

Metastabilities: reversible changes
Stabilization: Repeatedly achieving metastable state
Time scales of change

Transient changes in performance of two different types of CIGS modules

Changes can occur at different timescales for different modules
Importance to reliability

Important to differentiate between permanent degradation and reversible change

IEC 61646
Differentiating degradation

No stabilization
Degradation or metastable change?

Power

Damp heat

Unstabilized measurement
Differentiating degradation

![Diagram showing the differentiation of degradation with and without stabilization.](image)

- **Power** axis
- **Time** axis

**Damp heat**

- Unstabilized measurement
- Stabilized measurement with stabilization degradation ruled out

**Repeatable stabilization procedure needed before and after reliability test**
NREL efforts

• **CIGS**: Round robin test of new light-soaking procedure - underway

• **CdTe**: Currently developing a stabilization procedure for upcoming round robin
NREL efforts

- **CIGS**: Round robin test of new light-soaking procedure - underway

- **CdTe**: Currently developing a stabilization procedure for upcoming round robin
Current light soaking standard

Successive doses of 43 kWh m\(^{-2}\) until intermediate measurements are stable

Final power is compared to nameplate

No prescribed time limit between end of light-soak segment and measurement

Note: Currently an effort underway to replace 61646 with new version of 61215 covering all technologies
Improvements to current standard

Current standard:
Successive doses of 43 kWh m\(^{-2}\) until intermediate measurements are stable

Final power is compared to nameplate

No prescribed time-limit between end of light-soak segment and measurement

- Important to measure promptly after light exposure

Improvements to current standard

Five different CIGS modules measured after outdoor light exposure, once with forward bias applied once without.

- Important to measure promptly after light exposure
- Forward bias can help stabilize power after light exposure

Procedure for CIGS round robin

Purpose:
- Eliminate variations in measured power from metastable changes occurring in a day or less
- Yield STC performance of a module operating outdoors

Procedure
- Expose to light for 5-5.25 hours
- Measure IV curve within 1 minute, for diagnostic purposes
  - If > 1 min delay, forward bias the module until IV measurement
- Forward bias module as it cools to 25°C
- Measure second IV curve
NREL efforts

• **CIGS**: Round robin test of new light-soaking procedure - underway

• **CdTe**: Currently developing a stabilization procedure for upcoming round robin
  o Possibility of stabilizing with forward bias instead of light
CdTe dark bias procedure

- Heat module to 85°C and bias at 90-100% of $V_{oc}$ for 1.5 hours
- Repeat until three successive room temperature power measurements are stable
- Room temperature measurements made within 30 to 60 minutes of cooling down
Two types of CdTe module were stabilized with the dark forward bias procedure, then placed in light-soak chamber.

Are we interested in a repeatable measurement, or outdoor performance?
CdTe bias stabilization: outdoor results

Two CdTe modules were bias stabilized and then deployed outdoors.

Outdoor data shows evidence that bias stabilization results in different module state.
Conclusion

• Thin-film modules undergo reversible changes in light and dark
• Controlling these changes is important for reliability testing and diagnostics
• Important questions:
  o Time-scale of any standardized procedure?
  o Repeatability vs. outdoor performance?
Acknowledgments

Thank you: Steve Rummel, Allan Anderberg, and Keith Emery (NREL)

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory.