

University of Ljubljana Faculty of Electrical Engineering

Moisture ingress into PV modules: long-term simulations and a new monitoring technique

Eleonora Annigoni¹, Federico Galliano^{1,3}, Marko Jankovec², Heng Yu Li^{1,3}, Laure-Emmanuelle Perret-Aebi³, Christophe Ballif^{1,3}, Fanny Sculati-Meillaud¹

¹ École Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT),

Photovoltaics and Thin Film Electronics Laboratory, Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland

² University of Ljubljana, Faculty of Electrical Engineering, Laboratory of photovoltaics and optoelectronics, Trzaska cesta 25, SI-1000 Ljubljana, Slovenia ³ CSEM, PV-center, Jaquet-Droz 1, 2000 Neuchâtel, Switzerland

e-mail: eleonora.annigoni@epfl.ch

Goals and Motivations

Approaches

- Predict moisture ingress into PV modules during long-term outdoor exposure, identifying impact of climate conditions and encapsulation scheme
- Water ingress is modeled with 2D Finite Elements Method (FEM) as a diffusion problem and simulated for:
 - Three different climatic conditions
- Improve modules life-time by better understanding water-related degradation mechanisms (e.g. delamination [1,2], potential induced degradation (PID) [3])
- two different encapsulation schemes.
- A new monitoring technique is then employed to measure the relative humidity inside the PV modules and validate the simulation model.

Water ingress modeling

Simulations model

ΡV module in materials Water ingress • described by Fick's Second Law of Diffusion:

$$\frac{c(x,t)}{\partial t} = D(t) \frac{\partial^2 c(x,t)}{\partial x^2}$$

- Solved by FEM with experimentally determined water diffusion coefficient D and solubility S of EVA and backsheet
- Water concentration at the outer surface calculated with Henry's law:

 $c_{surf}(t) = S(t) \cdot p_{H_20}(t)$

 2-D geometry assuming infinite length in the 3rd dimension

Glass/Backsheet: 1 climate, 1 yr

G/BS - 1 YEAR , NEUCHÂTEL (CH)

—Edge **—**B1 **—**F1

Observations

As expected: fastest moisture ingress in tropical climate (high temperature and high relative humidity), with clear seasonal variations, particularly at the edge

- Symmetries (dotted lines) exploited to reduce computational times, with Glass/Glass (G/G) scheme also vertically symmetric
- Modules assumed initially dry
- Output: time-evolution of water concentration in different positions in the module (edge, front, back)

- G/G reduces moisture accumulation with respect to G/BS (moisture content at cell back already larger in G/BS after 1st year than in G/G after 20 years).
- In G/BS, seasonal variations clearly visible at the cell back (increase in water concentration during cold and humid winter).
- G/BS simulations must now be extended to longer time-scales, such as in [4].

New monitoring technique: **Encapsulated relative humidity sensors**

Working principle

- Miniature digital relative humidity (RH) and temperature (T) sensors were soldered on a Printed Circuit Board (PCB) strip.
- The PCB strip was then laminated in G/G and G/BS samples.

Measuring water concentration inside PV modules

The technique has been preliminarily tested in climatic chamber \rightarrow care must be taken when sensor operates outside its normal specified

Simulations vs Measurements

- **Cool & Humid (Glass/Backsheet)**
 - G/BS NEUCHÂTEL (CH)

range

Samples were then installed outdoor to track evolution of internal RH.

Conclusions/Outlook

- Water concentration inside PV modules was simulated for different climates and encapsulation schemes:
 - As expected, tropical climate induces fastest water ingress, however cool & humid climate also features high water content after 20 years
 - G/BS after 1 year already shows higher water content than G/G after 20 years
- For G/BS, good agreement between simulated results and outdoor monitoring. But further (ongoing) experiments required, also in climatic chambers.
- Optimized choice for encapsulant materials, and in-depth investigation of moisture-related failure modes (e.g. delamination, PID) can be performed based on this analysis.

[1] M. D. Kempe, "Modeling of rates of moisture ingress into photovoltaic modules", Solar Energy Materials and Solar Cells, vol. 90, no. 16, pp. 2720–2738, 2006 [2] N. Kim et al., "Experimental characterization and simulation of water vapor diffusion through various encapsulants used in PV modules", Solar Energy Materials and Solar Cells, vol. 116, pp. 68-75, 2013 [3] J. Berghold et al., "Potential Induced Degradation of solar cells and panels", EU PVSEC, 2010 [4] P. Hülsmann et al., "Simulation of Water Vapor Ingress into PV-Modules under Different Climatic Conditions", Journal of Materials, Volume 2013

Acknowledgments

This work has been supported by Swiss Federal Office For Energy (grant SI/500750-01) and EOS Holding.