# Standards, Specifications and Characteristics of Global Irradiance Sensors

Anton Driesse PV Performance Labs



www.pvperformancelabs.com

#### Introduction



- User perspective
- PV system performance
- Want to achieve greater accuracy and quantified uncertainty in conclusions about PV system performance
- Need to better understand the accuracy/uncertainty of irradiance measurements and data sets
- Need to better understand instrument characteristics

#### Some years ago...



1981 - IEA Conference on Pyranometer Measurements Goal 2: Determine ways to improve the measurement accuracies of pyranometers currently available by developing a more complete understanding of the instruments' performance characteristics.

1996 - IEA Solar Heating and Cooling Programme Task 9 Improved Measurements of Solar Irradiance by Means of Detailed Pyranometer Characterisation

#### **Information Sources**



- Manufacturer specifications
  - classification standards
  - testing standards

# $(\eta)$

#### Characteristics

- Response time
- Zero offsets/thermal offsets
- Non-stability (long-term)
- Non-linearity
- Directional response
- Spectral selectivity
- Temperature response
- Tilt response

### Non-Linearity



- Pyranometer: (WMO/ISO)
  - deviation from responsivity at 500  $W/m^2$
  - irradiance range 100-1000 W/m<sup>2</sup>
  - 10/10 specified a maximum deviation
  - I/4 manufacturer specified a broader irradiance range
- Photodiode:
  - 4/5 specified a maximum deviation
  - no indication how deviation was calculated
  - all chose different irradiance ranges

#### Non-Linearity



- Reference cell: (IEC 60904-10)
  - maximum deviation from a linear fit on output vs. G
  - irradiance range not specified ("range of interest")
  - 1/7 specified a maximum deviation
  - no indication how deviation was calculated or over what range

#### Non-Linearity Correction ?



- Many sensors for other phenomena are non-linear, and linearity corrections are common
- Need a reliable linearity curve for the instrument or instrument type

#### **Temperature Response**



- Pyranometers (WMO/ISO)
  - maximum deviation over (floating) 50C range
  - I-3% over 50C range
  - 1/10 products provided with graph, 1/10 with numerical data
  - 1/4 manufacturer chooses a wider temperature range
- Photodiode pyranometers
  - 5/5 provide % deviation per C
  - makes 2-10% over 50C range

#### **Temperature Response**



- Reference cells
  - 6/7 provide % or mV deviation per C
  - applicable over full operating range
  - makes I-4% over 50C range

# Temperature Response Correction ?



- Need instrument temperature
  - 2/10 pyranometers have built-in sensors
  - many (most?) reference cells have built-in sensors
- Need reliable temperature response curve or slope coefficient
  - 1/10 pyranometers provided with correction instructions
  - temperature correction for reference cells is common

#### **Directional Response**



- Thermopiles: (WMO/ISO)
  - maximum deviation in  $W/m^2$  in any direction when normal irradiance is 1000  $W/m^2$
  - 10/10 datasheets provide maximum errors
  - 1/4 manufacturers specifies angle limit
  - measurements at different instrument rotations are needed as well to assess non-symmetry

#### **Directional Response**

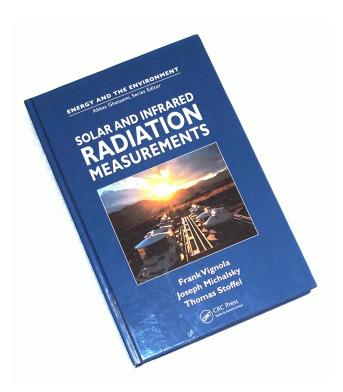


- Photodiodes:
  - 1/5 datasheets provides maximum error in W/m<sup>2</sup>
  - 4/5 datasheets provide maximum error in %
  - all datasheets specify angle limits
  - several datasheets provide graphs
- Reference cells:
  - 1/7 datasheets mentions angle limit
  - 0/7 datasheets provide maximum error

# **Directional Response Correction ?**



- Need sun position and diffuse fraction
- Need reliable directional response curve


#### More Corrections ?



- Pyranometer thermal offsets
  - correction based on IR measurements
- Photodiode or reference cell spectral response
  - correction using models based on air mass

#### Information Sources

- Manufacturer specifications
  - Classification standards
  - Testing standards
- Books
- Independent studies





#### Photon 2010



#### Solarstrahlungssensoren: Tageseinstrahlungssummen

| Hersteller<br>Apogee Instruments Inc.     | Typenbezeichnung<br>SP-215   | Bauart Pyranometer mit Photodiode | Abweichung zur Referenzmessung in % |       |     |      |      |          |   |
|-------------------------------------------|------------------------------|-----------------------------------|-------------------------------------|-------|-----|------|------|----------|---|
|                                           |                              |                                   |                                     |       |     |      |      | 15,15    |   |
| EKO Instruments Co. Ltd.                  | MS-602                       | Thermosäulenpyranometer           |                                     |       |     | 4,26 |      | <b>.</b> | ľ |
| Hukseflux Thermal Sensors BV              | LP02                         | Thermosäulenpyranometer           |                                     |       |     | 2,88 |      | 1        | 1 |
| IKS Photovoltaik GmbH                     | lset Sensor (amorph)         | Solarzelle (amorphes Silizium)    |                                     | -1,0  | 3   |      | 1    | 1        | 1 |
|                                           | lset Sensor (monokristallin) | Solarzelle (monokristallin)       |                                     | -4,89 |     |      |      |          |   |
|                                           | lset Sensor (polykristallin) | Solarzelle (polykristallin)       |                                     | -3,19 |     |      |      |          |   |
| Kipp & Zonen BV                           | CMP3                         | Thermosäulenpyranometer           |                                     | -0    | .28 |      | 1    | 1        |   |
|                                           | SP Lite2                     | Pyranometer mit Photodiode        |                                     |       |     |      | 8,60 |          | 1 |
| LI-COR Biosciences                        | LI-200SA                     | Pyranometer mit Photodiode        |                                     |       |     | 7    | ,86  | 1        |   |
| Mencke & Tegtmeyer GmbH                   | Si-02-Pt100-K                | Solarzelle (monokristallin)       |                                     | -3,75 |     |      | •    | 1        |   |
|                                           | Si-10TC-K                    | Solarzelle (monokristallin)       | -6,6                                | 56    |     |      |      |          |   |
|                                           | Si-420TC-T-K                 | Solarzelle (monokristallin)       |                                     | -4,26 |     |      |      |          | 1 |
| NES Mess- und Meldesysteme, Lothar Viel   | SOZ-03                       | Solarzelle (monokristallin)       |                                     | -3,54 |     |      |      | 1        | 1 |
|                                           | SOZ-03 mit Verstärker        | Solarzelle (monokristallin)       |                                     | -2,61 |     |      |      |          | 1 |
| Reinhardt System- und Messelectronic GmbH | Globalstrahlungssensor       | Thermosäulenpyranometer           |                                     |       |     | 4,60 |      | 1        | 1 |
| Skye Instruments Ltd.                     | SKS 1110                     | Pyranometer mit Photodiode        |                                     |       |     | 7,   | 27   | 1        |   |
| Soluzione Solare                          | Sunmeter                     | Solarzelle (monokristallin)       | -7,56                               |       |     |      |      | 1        |   |
| Technische Alternative GmbH               | GBS01                        | Photodiode (monokristallin)       | -10,55                              | ••••• |     | •••• |      |          | • |
| Tritec International AG                   | Spektron 200*                | Solarzelle (monokristallin)       | -8,38                               |       |     |      |      |          |   |
|                                           | Spektron 210                 | Solarzelle (monokristallin)       |                                     | 5,47  |     |      |      |          |   |
|                                           | Spektron 300*                | Solarzelle (monokristallin)       | -14,05                              |       |     |      |      |          |   |
|                                           | Spektron 310                 | Solarzelle (monokristallin)       |                                     | -1,1  | 6   |      |      |          |   |

Schultz et al 2010



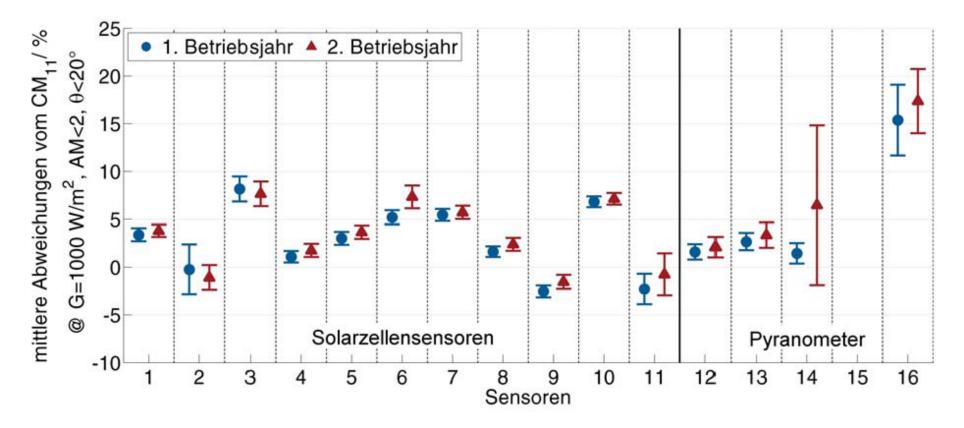



Abbildung 1: mittlere Abweichungen vom Thermosäulen-Pyranometer.

**PV Performance Labs** 

#### Schultz et al 2010



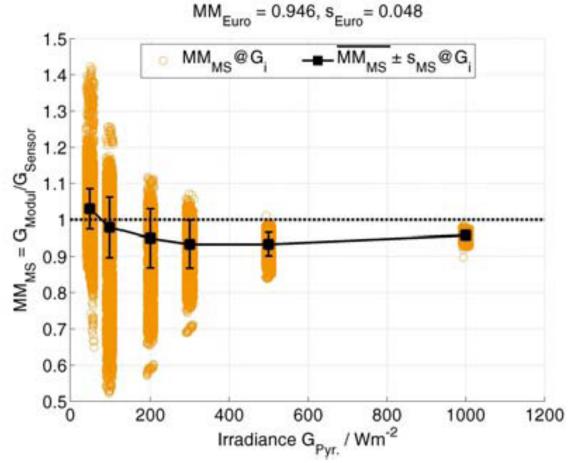
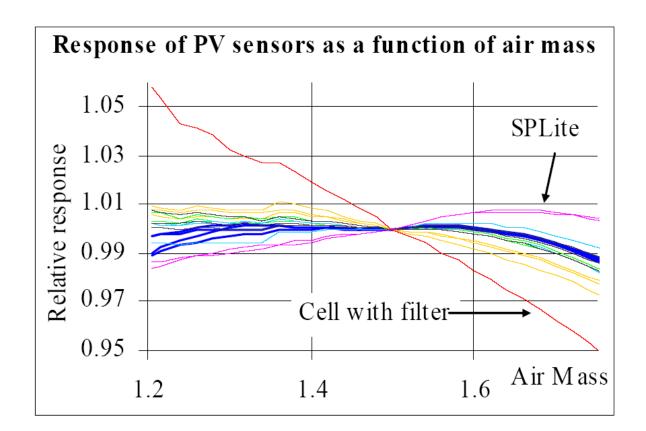
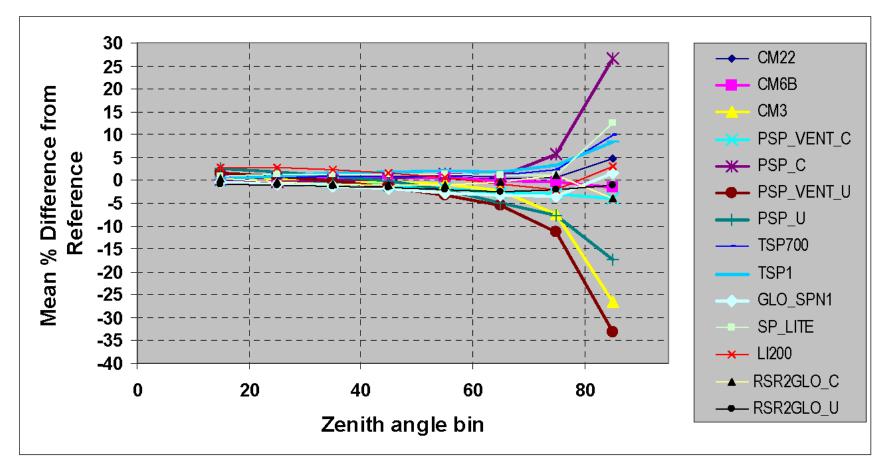




Figure 5: Mismatch between a monocrystalline PV module and a thermopile pyranometer (sensor 15)

EU PV Performance Project 2007






**Figure 5:** Relative response of reference cells as a function of air mass.

#### Wilcox and Meyers 2008

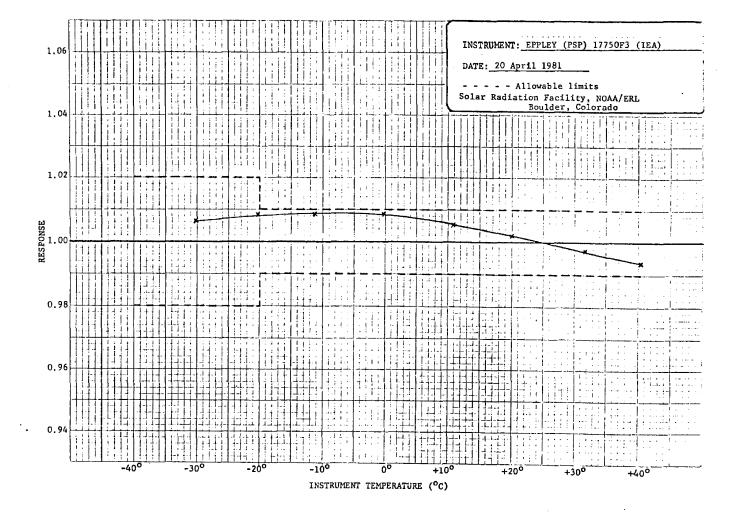


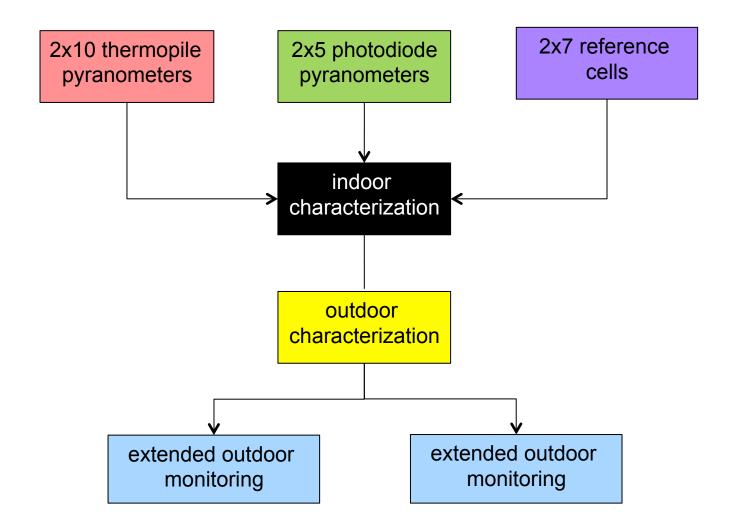


#### Figure 3-1. Mean percent differences from reference global irradiance for pyranometers as function of zenith angle. See Appendix A, Table A-1 for instrument list.



#### IEA Conf. Pyranometer Measurements 1981





Figure 22: Temperature chamber test data for Eppley PSP 17750F3.

2015-02-27

**PV** Performance Labs











- Detailed curves describing each instrument's response to the most important external influences
- Ability to apply corrections to and/or calculate uncertainties for individual irradiance measurements
- Ability to assess the suitability of instruments for different purposes
- Insights and recommendations for instrument test methods

# **Opportunities for Further Exploration**



- Variability with instruments of the same type
- Additional characteristics: long-term stability, ...
- Survey PV industry to find out what products have been and are currently being installed
- Identify potential instrument improvements to better meet the needs of the PV industry

Anton Driesse PV Performance Labs anton.driesse@pvperformancelabs.com