Accelerated Degradation by Light Illumination or Current Injection During Heat Tests on Flexible Thin Film Modules (from the PVQAT TG8 Japan Team's activity)

Keiichiro Sakurai1,2, Akihiro Takano2, Hironori Yanase2, Toshiaki Sakai2, Hironori Nishihara2, Tetsuro Nakamura2, Shinji Fujikake2, Masayoshi Takani2

a National Institute of Advanced Industrial Science and Technology (AIST),
b Photovoltaic Power Generation Technology Research Association (PVTEC)
PVQAT TG8 – working on thin film modules

International PV Quality Assurance Task Force

The International Photovoltaic Quality Assurance Task Force (PVQAT) is leading efforts to develop standards with three primary goals:

1. Provide comparative information about the relative durability of photovoltaic (PV) modules when exposed to a variety of stresses, giving solar customers a baseline for improving the accuracy of quantitative PV lifetime predictions.
2. Create a guideline for factory inspections of the QA system used during manufacturing.
3. Establish capability to issue PV system certifications.

PVQAT includes the following Task Groups. More information is available on each group’s progress and current status.

- **Task Group 1**: PV QA guideline for manufacturing consistency — leaders Ivan Sinicco, Yoshikiyo Eguchi, Govind Ramu, Gunnar Brueggemann, Wei Zhou
- **Task Group 2**: PV QA testing for thermal and mechanical fatigue including vibration — leaders Nick Bosco, Tadanori Tanahashi, Simon Xiao
- **Task Group 3**: PV QA testing for humidity, temperature, and voltage — leaders John Wohlgemuth, Takuya Doi, Neelkanth Dhere, Tony Tang
- **Task Group 4**: PV QA testing for diodes, shading and reverse bias — leaders Vivek Gade, Yasunori Uchida, Hubert Volz, Chandler Zhang, Paul Robusto
- **Task Group 5**: PV QA testing for UV, temperature, and humidity — leaders Michael Koehl, Tetsushi Shiota, Jasbir Bath, David Miller, Ganxin Jie
- **Task Group 6**: Communication of PV QA ratings to the community — leaders David Williams, Sarah Kurtz, Pierre Verlinden, Haiyan Qin
- **Task Group 7**: PVQA testing for concentrator PV (CSP) — leader Nick Bosco
- **Task Group 8**: PV QA testing for thin-film PV — leaders Neelkanth Dhere, Masayoshi Takeni, Veronica Bermudez, Yaohua Ma, Jingong Fan
- **Task Group 9**: PVQA testing for Concentrator PV (CPV) — leader Nick Bosco
- **Task Group 10**: Connectors — leaders Juris Kalezis, Tony Tang, Shilin Fan
- **Task Group 11**: QA for PV Systems — leaders Sumanth Lokanath, Shilin Fan, Niuchen Hui.

To volunteer for any of these Task Groups, please contact the leaders directly or visit the PVQAT website.

http://www.nrel.gov/ce/ipvmqa_task_force/
Unique degradation mode observed in a prototype Thin film Silicon flexible module (1)

(A. Takano et al, EU PVSEC 2013, 3BO.5.4)
Unique degradation mode observed in a prototype Thin film Silicon flexible module (2)

Degradation reproduced by Injecting current during damp heat testing (CDH test) → made it possible to fix the problem before mass production!

(A.Takano et al, EU PVSEC 2013, 3BO.5.4)
Current injection instead of light irradiation?

Current Injection + DH (CDH)

Light Irradiation+ DH (LDH)

Many panels at one time
Reversed current flow

Large chamber (small number of panels)
Normal current flow

(A.Takano et al, EU PVSEC 2013, 3BO.5.4)
Cause of degradation?

ETFE

Cell

Acetic Acid

EVA

Acetic Acid

(Roof shingle)

Change EVA to acid-free encapsulant → longer lifetime

(A. Takano et al, EU PVSEC 2013, 3BO.5.4)
Is there any difference in results between current injection and light irradiation?

Would this CDH test reproduce degradations better on other types of modules as well?

- other flexible thin film Si products?
- flexible CIGS?
- rigid thin films?

(A. Takano et al, EU PVSEC 2013, 3BO.5.4)
Experiments

Flexible TF modules
- Thin film Si
- CIGS purchased in the market (not really designed for long-term use)

- DryHeat (75 ~ 85°C 20%) (module temperature) With visible light irradiation
- Damp/DryHeat with Current injection
- DryHeat (85°C 20%) or DampHeat (dark)
- Outdoor

(75 ~ 85°C 20% r.h. white (=blue+yellow) LED, power close to 1kW/m²)

Compare the degradation (I-V, EL)
light + DryHeat : I-V: CIGS flexible product 2

- quick initial degradation followed by slow (or no) degradation
- decreased Voc & FF
- retained Isc

Note: sample number is small, individual difference may be present
light+DryHeat : EL: CIGS2

CIGS2 Light+Heat(1kΩ)
initial 500hrs 1000hrs 3000hrs

CIGS2 Light+Heat(open)
(Data lost)

CIGS2 Heat (dark)

EL images darkened within first 500hrs of Light+DryHeat
current + DampHeat : I-V: CIGS flexible product 2

Degrades too fast under DampHeat conditions -- couldn't observe any dependency with current
light+DampHeat : EL: CIGS2

S13
(Light+DampHeat, open)

S14
(Light+DampHeat, shunt)

S16
(Dark+DampHeat)

S17
(Dark+DampHeat)

Darker EL with light + DampHeat too --- darker EL seems clear
(However, difference in I-V not distinguishable up to 1000hrs
-- further tests underway)
CIGS2: Destructive analysis

Samples:
- Reference (as-purchased)
- Dark+\textbf{Dry}Heat 3900hrs
- Light+\textbf{Dry}Heat 3100hrs

- Rip off EVA close to the cell
 - Ion Chromatography
 - FT-IR (ATR)
CIGS2: Ion Chromatography
(Reference / Dark+DryHeat / Light+DryHeat)

Acetic acid content in EVA (μg/g)

- Reference (as-purchased) 10
- Dark+DryHeat 140
- Light+DryHeat 34

Increased acetic acid content by DryHeat
Large difference between Light and Dark samples
CIGS2: FT-IR comparison (Dark vs Light, both DryHeat)

More -OH and -COOH observed in EVA of Dark+DryHeat sample
Summary

What can be said now:
Adding current injection (or light illumination) to conventional DH test
• was a **must** for at least one prototype flexible TF-Si actually did a crucial job to improve a product’s durability
• **may** work better for at least one flexible CIGS product
 • darker EL by light illumination during DryHeat/DampHeat tests
 • degradation in Voc&FF by light illumination (possible)
 • change in acetic acid content in EVA by light illumination (possible)

If it is proved that the current injection does work better for multiple samples, then it would be worth considering modification of the IEC standard.

More “not-so-robust” samples & tests are needed.
If you can contribute, join us!
Thank you!
Further experiments

Small flexible modules
continue to gather more data (add more samples)

• Compare with outdoor results
• Add rigid modules as well?

Large flexible modules

• Light + Heat:
 underway at AIST
• Outdoor, Current injection+DH:
 To be tested at FSEC