Prototyping and Validation of Two Low-Cost Inline CPV Module Efficiency Characterization Methods

Michael Sinclair, Stephen Caelers, Pascal Dufour, Stefan Myrskog, John Paul Morgan

February 24th 2015
Presentation at PV Module Reliability Workshop
Golden, Colorado
The Problem

• Quantifying CPV performance is challenging!
 – Requires a collimated solar simulator (CSS) to test to Concentrator Standard Test Conditions (CSTC)
 – High CAPEX and high operating costs
 – Hard to maintain calibration
 – Requires highly trained operators and technicians
 – Repeatability $\sigma = 2.8\%$ (current system at MSI)

Is there another way?
The Solution

• Prototype new tools for low cost in-line efficiency estimation

• Use standard automation equipment to reduce complexity and minimize sources of variation

• These alternative techniques will estimate optical efficiency (I_{sc}) for individual optics
 – Module P_{mp} can be calculated based on an average cell model (Future work!)
The Solution

• Key Question:
 – How accurate does the estimate need to be?
Agenda

1. Laser Solar Simulator
 i. Approach
 ii. Experimental Set-Up
 iii. System Performance
 iv. Results

2. Electroluminescence Imaging
 i. Approach
 ii. Experimental Set-Up
 iii. System Performance
 iv. Results

3. Conclusions
LSS: Approach

1. The output beam from a fibre-coupled laser system is collimated over the area of one optic

2. A two-axis translation stage shuttles the sample under the collimated beam

3. I_{sc} is directly measured for each individual optic
LSS: Experimental Set-Up

- The sample translates under a stationary imaging system.
- Not shown: Laser source, 2-axis translation stage, LabVIEW GUI.
LSS: System Performance

• Collimation: ±0.5°
• Irradiation Non-Uniformity: ±5%
• Fast results: less than 2 seconds per optic
LSS: System Performance

• Gauge R&R results:
 – Not great!
 – Repeatability $\sigma = 3.4\%$

<table>
<thead>
<tr>
<th>Source</th>
<th>% Contribution (of VarComp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Gage R&R</td>
<td>13.49%</td>
</tr>
<tr>
<td>Repeatability</td>
<td>6.88%</td>
</tr>
<tr>
<td>Reproducibility</td>
<td>6.61%</td>
</tr>
<tr>
<td>Part-to-Part</td>
<td>86.51%</td>
</tr>
<tr>
<td>Total Variation</td>
<td>100%</td>
</tr>
</tbody>
</table>
LSS: Results

Normalized Isc Measurements - LSS vs CSS

Error - LSS to CSS
LSS: Results

Fitted Line Plot

LSS Result = -0.09717 + 1.097 CSS Result

S: 0.0343135
R-Sq: 96.5%
R-Sq(adj): 96.4%
Agenda

1. Laser Solar Simulator
 i. Approach
 ii. Experimental Set-Up
 iii. Performance
 iv. Results

2. Electroluminescence Imaging
 i. Approach
 ii. Experimental Set-Up
 iii. Performance
 iv. Results

3. Conclusions
EL: Approach

- Electroluminescence (EL) imaging is widely used in PV manufacturing for defect detection

- Reversible Systems
 - Solar cell -> LED
 - Concentrator -> Collimator
EL: Approach

1. Constant current is applied to the test module leads
2. The collimated output beam is imaged by the test system
3. Individual optic images are processed to make I_{sc} estimate
EL: Experimental Set-Up

- The sample translates under a stationary imaging system
- Not shown: power supply, 2-axis translation stage, LabVIEW GUI
EL: Approach
EL: System Performance

• We developed a lab-scale system which provides:
 – Fast feedback → less than 5 seconds per optic
 – High resolution → 40 µm
 – Meaningful test images
 – Proof-of-concept for a production test system
EL: System Performance

- Gauge R&R results:
 - Good!
 - Repeatability $\sigma = 2.3\%$

<table>
<thead>
<tr>
<th>Source</th>
<th>% Contribution (of VarComp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Gage R&R</td>
<td>4.33%</td>
</tr>
<tr>
<td>Repeatability</td>
<td>1.94%</td>
</tr>
<tr>
<td>Reproducibility</td>
<td>2.39%</td>
</tr>
<tr>
<td>Part-to-Part</td>
<td>95.67%</td>
</tr>
<tr>
<td>Total Variation</td>
<td>100%</td>
</tr>
</tbody>
</table>
EL: Results

Normalized Isc Measurements - EL vs CSS

Error - EL to CSS
EL: Results

Fitted Line Plot
EL Result = - 0.3012 + 1.301 CSS Result

S = 0.0731926
R-Sq = 89.4%
R-Sq(adj) = 89.3%
Review

• Two low-cost efficiency estimation tools are in development

<table>
<thead>
<tr>
<th></th>
<th>CCS</th>
<th>LSS</th>
<th>EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability (σ)</td>
<td>2.8%</td>
<td>3.4%</td>
<td>2.3%</td>
</tr>
<tr>
<td>Accuracy to CSS (σ)</td>
<td>-</td>
<td>3.4%</td>
<td>7.3%</td>
</tr>
</tbody>
</table>

• Further improvements are required to improve estimation accuracy
Conclusions

• Alternative solutions for quantifying CPV module performance at CSTC can be considered
 – Careful calibration of test results to CSTC is essential
 – Additional quality systems requirements can be designed to facilitate low-cost testing methodologies
Thank You!