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overview
 

§ Short review of common PV adhesion tests 

§ Introduction of the fracture mechanics based approach to 
adhesion testing 

§ Applications of this approach to PV laminate materials at 
both the coupon and module level 

§ Extension of these measurements for lifetime prediction of 
adhesive systems 

§ Review and Direction 
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limitations of common adhesion tests 
lap shear 

peel test
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fracture mechanics 


fracture dWsGc = toughness dA 

complianc δC = e P 
energy release 
rate 
toughness 
adhesion 
debond energy 

G = 
P2 

2b 

dC 

da 
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figures inspired by: T.L. Anderson, “Fracture 
Mechanics” CRC Press, Boca Raton, FL 1995 



  

  

sample modification
 

peel test
 

cantilever beam 
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single cantilever beam 

glass/EVA 
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single cantilever beam 
0% silane 

§ Load reversals to measure 
compliance with crack extension C ∝ a3 

§ produce linear fit of compliance 
with crack extension 

§ Evaluate toughness at each crack 
length 

P2 dC G =	 = 
2b da 

Pn 
2 

2b 
3man 

2C = ma3 + b 

dC 

da 
= 3ma2 
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single cantilever beam, coupon level
 
0% silane
 

0.8 mm Ti beam 1.5 mm Ti beam 

2mm 2mm 

Calculate fracture toughness for 
each crack extension 
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single cantilever beam, module level
 
0% silane 
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   single cantilever beam, EVA
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single cantilever beam, backsheet
 
Debond Energy decreased with aging temperature and RH 
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single cantilever beam, backsheet 
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double cantilever beam (DCB) 
thin metal film on 
glass 

δ

P



14	  

corner adhesion test 
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§  Compliance becomes independent 
of crack length 

 
§  Crack will extend at a constant, 

critical load 

debond experiment 
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corner adhesion test, coupon level 

Corne
r 

SCB 
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corner adhesion test, coupon level 
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corner adhesion test, module level 
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corner adhesion test, module level 

applied to module cell applied to module backsheet 
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corner adhesion test, module level 
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subcritical crack growth 
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subcritical crack growth 
V-G plots 

This is the “adhesive strength” 

This is the “adhesive threshold”, or a 
stress at which cracks will not 
propagate.  A reliable design will 
“live” here. 
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subcritical crack growth, SCB  
Glass/ EVA 



23	  

subcritical crack growth, SCB  
Glass/ EVA debond growth kinetics 
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debond growth of EVA encapsulant 
interfaces is controlled by the 
viscoelastic processes that are 
affected by water through the 
plasticization of the debond tip 
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subcritical crack growth, SCB  
Backsheet debond kinetics and lifetime prediction 
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direction 

§  Ongoing NREL scientific work is focused on applying the 
FM method to characterization for all PV adhesives 

§  We will develop protocols for applying this technique to all 
relevant material systems 

§  This work will provide the scientific basis for incorporating 
these techniques into future revisions of international 
standards 
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limitations of common adhesion tests  

Sample 
Properties 

§  Stiffness 
§  Electrical Resistance 
§  Strength 

Material 
Properties 

§  Elastic Modulus 
§  Electrical Resistivity 
§  Toughness 
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review 

§  FM based adhesion tests measure a quantitative material 
property 

§  Methods can be applied at both the coupon and module 
level and to all interfaces of the PV laminate 

§  Tests may be developed to be straight forward using 
common mechanical test equipment 

§  Subcritical measurements allow modeling of adhesive 
degradation mechanisms and ultimately provide a lifetime 
prediction tool 
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