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Objectives

*Develop a quantitative technique to measure adhesion and debond kinetics in EVA
Encapsulants and TPE backsheets.

*Characterize the effect of ageing treatment duration, as well as the effects of environmental
temperature and relative humidity on backsheet and encapsulant debond energy.

*Investigate the effect of mechanical stress, moisture and temperature on debond growth rate.

*Develop a predictive model of the effect of mechanical stress, moisture and temperature on
debond growth rate.

Encapsulation Specimen Preparation

Encapsulation System

A Polyvinyl fluoride-polyester backsheet o Polyvinyl fluoride
. . acksheet Polyester

with EVA seed was laminated to a layer of EVA Seed

EVA encapsulation and a glass substrate. EVA Encapsulant

Tempered Glass

Lamination Heat Cycle .
Y Lamination was performed at 145°C for 8

minutes at 1 atmosphere pressure.
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The glass was cleaned prior to lamination,
including: buffing with pumice powder;
washing and rinsing.

120

100

y
&
\

\ \-\-V‘i“ T —" - 0.0
Lamination Instrument

80

T, Temperature {°C}
{wyy} auinssaud Jaquieyn ‘g4

60
-0.5

40

The specimen components were fixed
20 100 during lamination to improve their
b Time {min} thickness uniformity.

Debond Energy and Debond Growth Experiment

Single cantilever beam (SCB) experiment

A Single Ca ntilever beam (SCB) { Polyvinyl fluoride Mechanical load
Backsheet Polyester T
testing metrology, based on the EVA Seed = =
well-known double cantilever EVA Encapsulant
beam method, was developed. Tempered Glass W W W W U N W WA NN
V4

A PMMA (or Ti) beam was bonded to the backsheet
and a loading tab was bonded to one end of the beam.
An incision was made through the backsheet and
underlying encapsulant

Microtension testing system

*The glass substrate was rigidly fixed to a testing table
and the loading tab was connected to a linear actuator
in series with a load cell.

* Load and displacement were measured =0 |
during the experiment. The debond energy, ) s C _9
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3 : " ' were loaded below G.. The displacement was
5 . Transport-limited , L
- . \ fixed and the load relaxation inherent to debond
T J growth was recorded.
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* The experiments were performed at selected
Strain Energy Release Rate, G values of temperature and relative humidity.

Debond Energy of EVA Encapsulants and TPE Backsheets

Debond Energy decreases with temperature
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* The debond .energy.of the EVA—glass structure » The debond energy of the backsheets « Higher ageing temperature and relative
decreased with testing temperature. decreased linearly with ageing duration for humidity corresponded to lower debond
* The debond energy decreased precipitously at 800hrs to very low values (~28 J/m?). energies .
T~60°C, which corresponds to one of the * Failure occurred at the PVF-PET interface * High values of debond energy corresponded

transition temperatures of the polymer.

to partially cohesive failure in the PVF.

Debonding Kinetics of EVA Encapsulants and TPE Backsheets in Controlled Environments

Temperature Effect on Debond Growth Rate
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Conclusions

* The debond energy of a PV encapsulant and backsheet were measured after several ageing treatments. The debond energy decreased with ageing treatment duration,

relative humidity and temperature.

* The effect of mechanical stress, temperature and relative humidity on encapsulant and backsheet debond growth was reported. The debond growth rate increased up

to 500-fold with small changes of temperature (10°C) and relative humidity (20%) .

* The effect of temperature on debond growth was modeled with the Arrhenius and the Williams-Landel-Ferry equation. The effect of moisture on the debond growth rate

was modeled with the humidity dependence of the PVF modulus and the plasticizing effect of water on EVA.
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