Stability of CdTe Cells with Different Device Structures

Jim Sites, Colorado State University NREL Photovoltaic Module Reliability Workshop February 26, 2014

with former students: Jason Hiltner, Alex Pudov, Sam Demtsu, and Caroline Corwine and current students John Raguse and Russell Geisthardt, and research associates Jennifer Drayton and Tyler McGoffin Funding from DOE F-PACE program

Motivation for cell-level CdTe stability testing:

- Possible intrinsic issues with CdTe cells
- Additional issues can arise with different device structures

• Device analysis generally assumes good stability; flawed otherwise

Multiple stress parameters important:

- Temperature
- Illumination level
- Voltage bias
 (Humidity)

Multiple tracking measurements important:

- Average cell properties: J-V, C-V, (QE, J-V-T)
- Cell uniformity: LBIC, EL

Focus on plausible physical mechanisms

Accelerated Life Testing

Reliability Workshop - Jim Sites, Colorado State

Changes in CdTe Current-Voltage

Change seen earlier in first quadrant, later in power quadrant. Increasingly greater at higher temperatures.

From Samuel Demtsu

Voltage and Illumination Dependence

Long-Term Expectations

Define Acceleration Factor $a = \exp(E_a/kT_{eff} - E_a/kT_{cell})$ where an activation energy E_a (typically ~1 eV) can be deduced from rate of change at different temperatures and T_{eff} from a histogram of daylight module temperatures (and an estimate of E_a)

For CdTe with $T_{cell} = 85^{\circ}C$ and typical field temperatures, a appears to be in the range of 100-1000

Copper Model

Copper reduces the CdTe backcontact barrier, but can diffuse away. Positive ions diffuse faster when field is reduced at V_{oc} and above. Small amount of copper may not be sufficient, and may diffuse from back.

Caroline Corwine et al, SOLMAT 82, 481 (2004)

Effect on Capacitance

Copper diffusion appears to also increase carrier density

February 26, 2014

Reliability Workshop - Jim Sites, Colorado State

Alternative CdTe Structures

Varying the Back Contact

February 26, 2014

Light-Beam-Induced Current

Steps through 10,000 points in 10 min

Reliability Workshop - Jim Sites, Colorado State

Different Amounts of Copper

100°C, illuminated, short circuit (CSU cells)

Electroluminescence (EL)

EL and Voltage of Stressed CdTe Cells

EL tracks voltage; gives confidence to both

John Raguse and Jennifer Drayton

- Devices are standard CSU cell recipe
- Devices stressed at 65°C, at V_{oc} under nominal 1 sun illumination
- Decline and recovery appears real. Two effects from copper diffusion?

Summary

(1) Cell-level CdTe stability is generally good, but needs to be tested with new device structures.

- (2) Copper used with back contact is responsible for at least some of the change.
- (3) A mix of tracking measurements, including uniformity, is highly desirable.
- (4) There can be small stability issues that have little effect on performance, but can compromise analysis and could be precursor to later trouble.