Thin Film PID Field Failures and Root Cause Determination

N.A. Olsson, M. Propst. C Richardson, J. Hevelone*

Pearllaboratories 2649 E. Mulberry St, Unit 15 Fort Collins, CO 80512

*CopperMuse Artisan Distillery 244 N. College Ave Fort Collins, CO 80524

Outline

- Field Data
- Laboratory measurements on return modules
- Degradation model
- Verification
- Acceleration factors
- Manufacturing excursions
- Fixing the problem

Field

- Location:
- Size:
- Inverter:
- Voltage:
- Grounding:
- Modules:

- Germany
- 3 MW
- Transformer less
- 1000 V
- Ungrounded
- les: Thin Film (CdTe)
- Issue: Substantial under performance after 1 year of operation

Field Measurements

Module String Position

Return Module I-V

Severe degradation in Rsh is the issue

Additional tests on return modules

HiPot:	pass
H20 ingress:	none
Delam inspection:	none

Lock-In thermography Pinpointing the location of shunts

Severe scribe shunts in degraded module

Reversibility of damage

Main degradation is in Rsh and it is a reversible PID type

Laboratory PID test on "virgin" modules

Lock-in thermography of healed module

After positive bias healing

Before

Degradation Model

Verification experiments

Acceleration Factors

Time for P1 shunt resistance to drop 50%

	No Bias	-750V
41C	?	~20 hrs
57C	40 hrs	3.5 hrs
77C	8 hrs	0.5 hrs

Both temperature and voltage are strong drivers

Severely Degraded Modules: manufacturing excursions

All the severely degraded modules came from only one of 4 production chambers and only from a specific time period.

Root cause: Broken glass on top of heater coils in the deposition chamber: Excellent source of sodium.

Missing Rows 31

Excluded Rows 59

Means and Std Deviations

Level	Std Err						
	Number	Mean	Std Dev	Mean	Lower 95%	Upper 95%	
CMB121	14	0.887643	0.043081	0.01151	0.86277	0.91252	
CMB122	8	0.810250	0.034997	0.01237	0.78099	0.83951	
CMB123	105	0.662857	0.212916	0.02078	0.62165	0.70406	
CMB124	79	0.876544	0.056592	0.00637	0.86387	0.88922	

Photoconductivity in CdS

CdS photoconductivity is very dynamic and may take many Hrs to fully develop

Conclusions

- We have characterized a new type of reversible PID caused by field assisted diffusion of mobile ions into the P1 scribe lines in thin film modules.
- It is a bad idea to leave semiconductor material in the P1 scribe.
- Corrective Action
 - Switch P1 scribe and semi deposition process order

pearllaboratories

Backfill P1 with inert material

Thank You

