

DaySy Daylight Luminescence for PV Systems How to Check 400kW_{peak} Per Day With Electroluminescence

Liviu Stoicescu^a, Michael Reuter^a, Jürgen H. Werner^{a,b}

^a Solarzentrum Stuttgart, Stuttgart, Germany
 ^b Institut f
ür Photovoltaik, Universit
ät Stuttgart, Germany

Solarzentrum Stuttgart

- Research and development in photovoltaics and industrialization thereof
- In close cooperation with Institute for Photovoltaics, University of Stuttgart
 - Products/developments
 - Novel surface texture for crystalline silicon
 - PV module optimization
 - White colored cell interconnector +1%_{rel} efficiency
 - Lifetime calibrated photoluminescence imaging system
 - Full QSSPC integration
 - Very high irradiation homogeneity on 20x20cm²
 - Daylight luminescence analysis

Institute for Photovoltaics, Uni Stuttgart

Solar cell research

- Laser doped selective emitter
- Innovative solar cell concepts
- Fully laser processed IBC solar cells
 - <mark>→</mark> η ≈ 22 %!
- PV system research
 - PV system analysis and monitoring since 2004
 - Stuttgart, Cyprus, Egypt
- Characterization

entrum

- Lifetime calibrated photoluminescence systems
- Daylight luminescence system: DaySy

sola

Why Electroluminescence?

Defects are not always obvious!

solar stuttgart

Extreme hail in Germany 2013

- About 1/3 of modules in this PV plant with obvious glass failure
 - All others seemed undamaged

BUT

Dark room EL analysis proves 95 out of 96 modules with hail damage!

Module Failure Modes

Microcracks, broken cells, finger interruptions

Browning

6

Hot spots

Potential induced degradation (PID)

Optical Characterization Methods

UV - Fluorescence

Köntges et. al., 27th EUPVSEC 2012

Thermography

Luminescence

	Köntges et. al., 27th EUPVSEC 2012	40.3	
	UV - Fluorescence	Thermography	Luminescence
Pro	Cracks visible	Power loss	All defects
	Cost effective	Cost effective	Identification
Con	Night	Irradiance	Night
			Generator
	Well aged cracks	Identification	Expensive

What we do about it?

- Hot spot
 - How hot? Remove, replace or just observe...
- EL cell damage
 - How severe? How to judge?

Novel Method: DaySy

- Electro (EL)- and photoluminescence (PL) characterization
 - In full daylight
 - Independent of surrounding light
 - On mounted modules and full strings
 - Using either the PV-plant or a DC source as power supply

Measurement Procedure

Service Availability: Sunny Day

Service Availability: Cloudy Day

Whole String Imaging

- Potential induced degradation (PID)
- ✓ poor low light response
- ✓ damaged areas
- ✓ groups of broken fingers
- ✓ Very high throughput possible

Detection Limit

fingers

micro-cracks broken fingers \checkmark

- www.solarzentrum-stuttgart.com \checkmark
 - ✓ potential induced degra- ✓ groups of broken dation (PID)
 - damaged areas
 - ✓ groups of broken fingers
 - ✓ poor low light response

Scenario:

- Field PV installation with clustered string inverters, 250W_p modules, 20 modules/string
- Unpacking & Setup: 30 minutes; Wrap up: 15 minutes / operator
- Location of PV strings is unknown and has to be discovered: 10 min / string / operator ·

15

I minute for a EL image; 2 minutes for a EL+PL image

Defective Modules: Broken Cells

Electroluminescence (EL)

www.solarzentrum-stuttgart.com

Photoluminescence (PL)

Badly damaged module

- Dead areas: Black EL & black PL
- High series resistance: Dark EL & regular PL
- Low parallel resistance: Dark EL

Defective Modules: PID

Electroluminescence (EL)

Photoluminescence (PL)

Potential Induced Degradation (PID)

Chessboard pattern with darker EL and black PL due to low parallel resistance.

sol

Degraded Low-Light-Response

PL at 800 W/m²

PL at 80 W/m²

19

Degraded low light response

Low parallel resistance reduces the open circuit voltage at low light intensities

 \rightarrow Dark cells appear in low light PL image (right).

Automated Image Analysis

20

