Experimental evaluation of the acceleration factors and activation energies for humiditybased degradation phenomena in c-Si modules

Michael Köhl

Stephan Hoffmann

Fraunhofer Institute for

Solar Energy Systems ISE

How to perform Accelerated Life Testing ?

Experimental Set-up:

5 different commercially available c-Si module types in the framework of National German project "PV-Zuverlässigkeit II")

Different constant load tests

- Damp-heat-UV
- Damp-heat-humidity-freeze
- Temperature cycling
- Combi-tests
- Damp-heat tests

Damp-heat testing at 85%rh of 5 different c-Si modules at 75°C DH-75°C - P_{MPP}

DH - 85°C - P_{MPP}

DH - 85°C - P_{MPP}

DH-90°C - P_{MPP}

Damp-heat testing at 85%rh@ 75°C, 85°C and @90°C

EU-FP7 project SOPHIA

Work-sharing testing in different labs Challenge: how to compare the results

=>

1.0 0,9 0,8 0,7 P MPP, normalized C O O O - ISE-M02 75-85 ISE-M03 75-85 0,3 - AIT-04 85-85 ENEL-x_90-50 AIT-05_85-85 0,2 ENEL-y 90-50 INES-6476_95-85

poster by Jiang Zhu

Average activation energy

50 kJ/mol

© Fraunhofer ISE

No serious degradation at 50%rh

Similar degradation at 70% and 85% rh: S-curve for eff. humidity

What are the weathering stresses? => Monitoring climatic conditions

Ambient climate and sample temperatures as 1min averaged time series

Corrosivity, salt concentration as yearly or monthly dose

Modeling micro-climatic moisture stress factors for back-sheets and cell edges

1.) $T_{mod} = T_{amb} + H/(u_0 + u_1 v)$ modeling the module temperature

2.) rh $(T_{mod}) = rh (T_{amb}) * P_{sat} (T_{mod}) / P_{sat} (T_{amb})$ takes into account the higher module temperature

3.) $rh_{eff} = 1/(1 + exp(-s^*rh) \cdot (1/0,01-1))$ effective humidity gives more weight to periods with high rh

4.) $\Delta t_{85} = \Delta t^* rh_{eff} / 0.85$ relates to the moisture level during testing

Time-transformation functions for major degradation processes

5.) Process kinetics depend on module temperature (Time Transformation Function):

 $t_{test} = Lifetime (years) \cdot \Sigma_{i} \{ \Delta t_{i}(rh_{eff}, T_{mod,i}) \cdot exp [-(E_{a} / R) \cdot (1/T_{test} - 1/T_{mod,i})] \}$

 E_a = activation energy for the rate dominating degradation process

Evaluation of the service life time in different climates

Activation energy is more important than time to failure

Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure < 3%

Corresponding 85rh@85°C test for the tropical site would be 200h for 70kJ/mol and 450h for 55 kJ/mol

200h - 450h

Modeling micro-climatic stress factors front-side

Simulation of module humidity by FEM based on measured temperature dependent permeation/diffusion coefficients

Δ

0.15

0.1

© Fraunhofer ISE J. P. Hülsmann et al., "Simulation of Water Vapor Ingress into PV-Modules under Different Climatic Conditions," Journal of Materials, vol. 2013, doi:10.1155/2013/102691

Is high humidity relevant?

Is irradiation healing?

Is constant load testing relevant?

Thank you for your attention Workshop to be continued:

SOPHIA Workshop PV-Module Reliability

June 3rd– June 4th, 2014, Freiburg (Germany) From Type Approval to Accelerated Life Testing (ALT)

organized by Fraunhofer ISE (Michael Köhl) and JRC (Tony Sample)

www.pv-reliability.com

