

Power Electronics Thermal Control

Sreekant Narumanchi Center for Transportation Technologies and Systems

Presented at the Interagency Advanced Power Group Meeting

> Golden, Colorado May 5, 2010

NREL/PR-540-48053

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

NREL's Center for Transportation Technologies and Systems

DOE's Advanced Power Electronics and Electric Machines (APEEM)

Traction Drive System

Reduce Dependence on Oil Via Electrification of Vehicle Drives

Requirements: 55 kW peak for 18 sec; 30 kW continuous; 15-year life; coolant (air or 105°C WEG)

Power Electronics

Technology Targets

National Renewable Energy Laboratory

Motors

Technical targets

Heat Exchanger Materials

FY10 – Thermal Management projects

FOCUS AREA PROJECT	PE Packaging	Thermal Systems Integration	Heat Transfer Technologies	Thermal Stress and Reliability
Thermal System Performance and Integration	\star	\star		
Electical and Thermal Characterization, Modeling, and Reliability Assessment		*		*
Thermal Stress and Reliability	\star			*
Thermal performance and reliability of bonded interfaces	*			\star
Characterization and Development of Advanced Heat Transfer Technologies	*	*	*	*
Air Cooling Technology	*		*	
Thermal Control of PHEV / EV Charging Systems		*	\star	
Electric Motor Thermal Control		\star	\star	
Thermal Assessment		\star	\star	

Enhanced surfaces in conjunction with single-phase and two-phase flows

Surface enhancement: Single-phase channel flow, jet impingement

- Further increase the heat transfer rates in conjunction with single-phase channel flows and jet impingement.
- Prior studies have shown that surface roughening can:
 - Increase *h*-values by as much as 32% [Gabour & Lienhard (1994)],
 - Reduce R_{th} by as much as 60% [Sullivan et al. (1992)].
- Limited, if any, studies exist on the use of microporous and nano-structures as a means of enhancing jet impingement and channel flow heat transfer.

Procedure:

- 1. Fundamental study on the effect of enhanced surfaces on channel flow and jet impingement (free and submerged jets) heat transfer.
- 2. Conduct tests at various channel flow and jet velocities.

Surface enhancement: Two-phase heat transfer

- High heat transfer rates.
- Direct cooling using dielectric fluids can eliminate thermal bottlenecks.
- There are very few published studies (if any) investigating the effect of microporous and/or nano-structures on spray impingement boiling performance.

Procedure:

- 1. Fundamental study on the effect of enhanced surfaces on pool boiling, flow boiling, spray and jet impingement boiling.
- 2. Conduct tests at various fluid flow rates.

Strategy

•Current Work: Fundamental study to characterize the thermal performance of the enhanced surfaces.

•Future Work: Implement technology on an actual power electronics module & evaluate the surface enhancement's reliability.

Enhanced Surfaces

Single-phase channel flow and jet impingement in conjunction with enhanced surfaces

- Water @ 25°C inlet temperature.
- Channel flow, free and submerged jet configurations.
- 11 different surfaces tested.
- Channel flow tests for reference.

Enhanced surfaces: single-phase channel flow results

Enhanced surfaces: single-phase submerged jet results

Microporous/roughened surfaces had minimal effect on performance. 3,000 Baseline (Ra=0.3 um) Sandblasted (Ra=4.16 um) Pyr. Fins (140% increased area) Skived (Wolverine) produced Microporous (3M) highest *h*-value enhancement Spray Pyrolysis Skived (Wolverine) (~100%). Nanowire (CU) 2.000 Finned structures outperformed microporous/roughened surfaces Nu (increased area effect). 1,000 **d** =1.24 mm **S** = 6 mm Submerged Jet 0 (~4.8×**d**) Stagnation 5,000 10,000 15,000 20.000 0 Zone Re_d Wall Jet Zone T_{wall} 0 12 4 **U**_d (m/s) **HEATER**

L=12.7 mm (heater diameter)

Enhanced surfaces: single-phase free jet results

Two-phase cooling (pool boiling and spray impingement boiling) in conjunction with enhanced surfaces

- HFE-7100 dielectric.
- Saturated and subcooled conditions.
- Pressurized, full cone spray nozzle.
- Three different enhanced surfaces tested.
- Pool boiling tests for reference.

Enhanced surfaces: pool boiling (saturated HFE 7100)

Microporous Coating and Nanowires 30 Both the enhanced surfaces show lower incipience 02 (W/cm²) temperatures than the plain surface. Pool Boilina ሬ 10 – Plain The microporous surface showed ~500% increase Nanowire Microporous in the heat transfer coefficient at the same heater power, and $\sim 10\%$ increase in the critical heat flux 10 20 n 30 $\Delta T = T_w - T_{sat} (°C)$ (CHF) in comparison to the plain surface.

 The nanowire surface showed about 60% increase in the *h* near the CHF, while the CHF itself was considerably lower.

Enhanced surfaces: spray impingement boiling (saturated HFE 7100)

Microporous Coating

- 100-300% increase in nucleate boiling (N.B.) heat transfer with respect to plain surface.
- 7-20% increase in the CHF with respect to plain surface.
- Coating structure (micro cavities of various sizes) enhances boiling heat transfer.

HFE-7100 dielectric Fluid Full cone spray @15.8 cm³/s (corresponds to 7 m/s velocity)

Enhanced surfaces: spray impingement boiling (saturated HFE 7100)

Flow Rate Effect

- Increasing flow rate has minimal effect on nucleate boiling heat transfer for the microporous surface.
- Boiling is the dominant heat transfer mechanism on coated surface, less sensitive to convective effects.

HFE-7100 dielectric fluid Saturated conditions

System level implication

Jet impingement

•Submerged jet w/ skived surface decreases $R_{\text{th-j-a}}$ by:

- 11% (Entire Package),
- 39% (DCD).

Two-phase

•Pool boiling or spray cooling w/ microporous coating decreases **R**_{th-j-} _a by:

- 16% (Entire Package),
- 61% (DCD).

Decrease in $R_{\text{th-j-a}}$ will vary with different package configuration.

Future Work

i. Reliability:

- Investigate degradation of plain surface when subject to jet impingement including nozzle degradation over time,
- Investigate ability of enhanced surface to remain effective under long term use.
- ii. **Synthesize/optimize** additional coatings (e.g., using spray pyrolysis)
 - Single-phase & two-phase applications (HFE7100, HFO-1234yf).
- iii. **Implement** single-phase jet impingement with enhanced surfaces on a commercially available power electronics package (Semikron SKM).
- iv. **Implement** two-phase cooling with enhanced surface in a package.
- v. **Implement** flow visualization/characterization to understand underlying physics/mechanisms behind surface enhancements
 - PIV/micro-PIV, High speed video & Schlieren shadowgraphs.

Thermal interface materials for power electronics applications

Thermal interface materials - project relevance

- Excessive temperature can degrade the performance, life, and reliability of power electronic components.
- Advanced thermal control technologies are critical to enabling higher power densities and lower system cost.
- Interfaces pose a major bottleneck to heat removal.
- Bonded interface materials (BIMs) based on solder are associated with thermomechanical reliability concerns under temperature cycling, as well as degradation at higher temperatures (>120°C).

The Problem

BIM 2

K. Stinson-Bagby, M.S. Thesis, Virginia Tech, 2002.

- Conventional TIMs do not meet thermal performance and reliability targets.
- Due to advantages from a packaging viewpoint, industry is trending toward bonded interfaces.
- Bonded interfaces such as solder degrade at higher temperatures, and are prone to thermomechanical failure under large temperature cycling.
 Direct-bond-copper (DBC) or Direct-bond-aluminum (DBA)

Sintered interfaces – based on silver nanoparticles

80

95

Fixture

G.-Q. Lu, Virginia Tech Synthesis of sintered interface

- mag WD det Silver Silver Sintered coating coating interface Nickel Nickel coating coating
- Sintered interfaces synthesized between silvered Cu-Cu and Al-Al disks (31.8 mm diameter) at Virginia Tech.
- A nickel coating (~2 μ m) followed by silver coating (~ 2 μ m) is applied on the copper and aluminum disks.
- For comparison, lead-free solder (SN100C) interface synthesized between Cu-Cu disks (31.8 mm diameter).
- Different thicknesses fabricated (20 ~ 200 microns).

Sintered interfaces – preliminary experimental results

ASTM test fixture

Samples	Thickness (µm)	Resistance (mm ² K/W)
Silvered Cu-Cu sintered interface	20	5.8
	27	8.0
	64	5.4
Silvered Al-Al sintered interface	28	14.9
	103	25.2
	144	5.0
Cu-Cu soldered interface (SN100C)	80	1.0
	150	4.8
	200	3.7

- The thermal resistance tests were performed using the NREL ASTM TIM apparatus
 - Average sample temperature ~ 65°C, pressure is 276 kPa (40 psi).
- The silvered Cu-Cu sintered interface shows promising thermal performance.
- Results hint at some problems with the bonding of the silvered Al-Al interface.
- The lead-free solder (SN100C) interface initial thermal results are very promising.

Thermoplastics with embedded carbon fibers

- Thermoplastic films (provided by Btech) bonded between 31.8 mm diameter copper disks.
- Promising thermal results (8 mm²K/W for 100 microns bondline thickness).
- Continuing work at NREL to further decrease contact resistance to approach target thermal performance, as well as characterize reliability.

Sequence of bonding steps

Distance across the package (mm)

Future Work

Remainder of FY10

- Work with Btech to develop and test (via ASTM steady-state approach) improved and reliable thermoplastics with embedded carbon fibers meeting target thermal performance
 - Reduce contact resistance via ionimplantation and metal evaporation/sputtering techniques.
- In collaboration with Virginia Tech and Btech, synthesize and characterize various joints between DBA/DBC and aluminum/copper baseplate
 - Synthesis of soldered, sintered, brazed and thermoplastic joints,
 - Subject joints to thermal shock,
 - Thermal resistance measurement after select cycles,
 - CSAM after select cycles,
 - High-potential test after select cycles,
 - Modeling of the joint thermomechanical behavior (physics-of-failure) – end-of-life predictive model.

Tom Gennett, NREL

Future Work

FY11, FY12

- Detailed synthesis and characterization of thermal performance and reliability of joints based on the matrix given below
 - Synthesis of bond/joint,
 - Subject joint/bond to thermal shock,
 - Thermal resistance measurements after select cycles,
 - Joint quality characterization (CSAM) after select cycles,
 - High-potential test after select cycles,
 - Modeling of thermo-mechanical behavior of the joints,
 - Degradation/end-of-life model of the joints and the package.

Joint Material	Substrate	Metallization	Coating	Baseplate
Solder Joints (Pb free & Pb)	AIN	Al	Ag	Al
Brazed Joints	Al ₂ O ₃	Cu	Au	Cu
Sintered Joints	Si ₃ N ₄			AlSiC
Thermoplastics				

Summary

- Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging.
- Very promising results from microporous coatings and skived surfaces in conjunction with single and two-phase flows.
- Sintered materials and thermoplastics with embedded fibers show significant promise as TIMs.
- Appropriate cooling technology depends on:
 - Package application,
 - Reliability.

- Susan Rogers, U.S. Department of Energy
- Kevin Bennion, Charles King, Mark Mihalic, Gilbert Moreno, Michael O'Keefe, Suraj Thiagarajan, Travis Venson, Tom Gennett, Kim Jones, Bobby To (NREL)
- Wei Wang and Ronggui Yang (CU Boulder)
- Jay Browne (Btech)
- Gary Eesley (Delphi)
- Greg Smith (GM)
- Sy-Jenq Loong (Wolverine Tube Inc.)
- Phil Tuma (3M)
- G.Q. Lu (Virginia Tech)