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Oscillatory Networks 

 Many natural (even societal) networks have oscillatory dynamics 

 Sensors ubiquitous in actual networked systems 

 Collecting huge volume of data during normal conditions (small perturb.) 

 Phasor measurement unit (PMU) in power grids 

 Seismometers installed around the world 
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Electromechanical (EM) Oscillations 

 Can we infer the grid frequency response to any disturbance input 
using the ambient synchrophasor data? 
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https://www.youtube.com/watch?v=awvS4TtN77E 



A Data-Driven Approach 
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Sample ambient data 

Filtered output: 
white noise! 

 In seismology, 
ambient noise fields successfully 
used to recover the propagation of 
earthquake waves [Sneider’04, 
Wapenaar’04, Sneider et al’07] 

 Analytical results established for 
homogeneous continuum medium 
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Power System Dynamic Analysis 

 Mode estimation of frequency and damping from the correlation of 
ambient frequency/angle/voltage data 
 Recursive estimation algorithms [Zhou et al’05] 
 Pencil matrix method [Borden et al’13] 
 Fast subspace-based algorithms [Ning et al’15] 

 Data-driven estimation of dynamic system model such as the 
dynamic state Jacobian matrix [Wang et al’16-17] 

 Green’s function connected to power systems [Backhaus et al’12] 

 Continuum modeling of 2-dimensional EM wave propagation with 
homogeneously placed gens/loads/lines [Parashar et al’04] 

Our focus: explore the analytical conditions/practical limitations of  

cross-correlation based modeling of (primary) freq. response 
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Dynamic System Modeling 

 Consider a system of n generators with the classical model 

( ): rotor angle (speed) deviation 

 ( ): angular momentum (damping coefficient) 

 :         local input of power imbalance 

 : power flow from generator i to j (for equivalent network) 

 Using the linearized power flow model 

(SE) 

 M and D are diagonal 

 K is the power flow Jacobian matrix (~symmetric) 
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Ambient Data Modeling 

 Goal: estimating (impulse) frequency response from any 𝑢𝑘 to 𝜔ℓ 

 Ambient conditions: normal operations with small perturbations 

(as1) The system (SE) is excited by zero-mean white noise input 

 Random variations of power system loads/resources 

 (Normalized) cross-correlation of ambient speed (frequency) data 
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A Classical Example 

h(t) 
𝑢(𝑡) 𝑦(𝑡) 

 System identification of SISO 

 If input 𝑢(𝑡) is white noise, then the transfer function 
ℎ 𝑡 𝑡∝ 𝐶𝑦𝑢 

 Even if 𝑢(𝑡) is non-white, can estimate it using 𝐶𝑢𝑢 𝑡 
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Model-based Analysis 

For simplicity, consider undamped oscillations with 

(SE’) 



 Extended to uniformly damped systems (homogeneity relaxed!) 

 Oscillation modes for (SE’) solved by generalized eigen. problem 

(as2) is positive definite (PD) and      is symmetric 
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Lemma: Under (as2), the eigenvectors in      are M-orthonormal; i.e., 

with  having eigenvalues of 



                 

  

            

Uncoupled Modes 

 Linear transformation of (SE’): and 

 Each mode (       ) associated with 

 Under zero initialization 

 Impulse frequency response 
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Equivalence Results 

(as3) Input noise variance proportional to inertia; i.e., 

 Homogeneously excited modes: identical and uncorrelated 

Prop: Under (as1)-(as3), frequency response can be recovered by 
cross-correlating and as 

Under (as3), only intra-
mode components exist! 
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Damped System Extension 

 Under uniform damping, M-orthonormal property still holds 

 Each mode (  ) is updated to 

with 

P. Huynh, Q. Chen, A. Elbanna, and H. Zhu, “Data-Driven Estimation of Frequency Response from 
Ambient Synchrophasor Measurements,” IEEE Trans. Power Systems, Nov. 2018. 
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WSCC 9-Bus Test Case 

 Synthetic ambient speed 
outputs generated with 
randomly perturbing generator 
inputs using: 

(i) linearized system model 

(ii) time-domain simulation 

 With line losses, matrix K 
slightly asymmetric 

WSCC 3-gen 9-bus case 
one-line diagram [PSAT] 
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Uniform Damping 

 Great match with non-symmetric K under line losses! 
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Non-uniform Damping 

 Less accurate estimation of scaling factor (mode coupling) 
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Higher-order Generator Model 

 Noticeable difference in the curve shape (correlated modes) 
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Real Data Tests 
 Frequency measurements for the Eastern Interconnection (EI) 

system under normal grid operations 

 Collected from 10:00-10:15 AM on 01/20/2017 by FNET devices 

 Compared to the actual response to the disturbance of 2008 
Florida blackout 
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Propagation Time 
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Node # Rec. Est. 

601 1.5 1.2 

671 0.7 0.5 

682 2.6 2.6 

726 2.5 2.6 

729 2.3 2.6 

756 1.6 1.9 

767 1.5 1.9 

781 2.1 2.1 

787 1.6 1.6 

823 1.5 1.7 

0.5 
671 

2.6726 

2.6 
729 

2.0781 

2.6 
682 

Meter index 
Recorded propagation time 
Estimated propagation time 



Estimated Response 

 From Florida to Arkansas, Missouri, and North Dakota 

19 



 
  

 

 

 

Conclusions and ? 

 Identified a set of analytical conditions to allow the recovery of 
frequency response using ambient data cross-correlation 

 Uniformly damped system with uncoupled modes 

 Each mode equally excited by zero-mean perturbations 

 These conditions may hold in practice, however, limiting this 
approach because of the following open questions 

 Account for system nonlinearity 

 Towards high-dimensional space 

 How about real-time decision making? 
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Thank you! 

Hao Zhu 

haozhu@utexas.edu 

http://sites.utexas.edu/haozhu/ 
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