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What Matters for Efficient Risk Management?

Make Better Decisions with I.ess

Better: Less:

Cost, reliability, emissions Data requirements
Physics-informed models Computational costs
Market suitable Malfunction

Fast computations Distrust

Insight discovery



A Typical Decision-Making Pipeline

Consider a decision-making problem (SCUC/SCED): MiN, e X (w) C(z,w)

| |
| |
| . . |
| C'(-)  objective (cost) function X feasible solution space |
| |
| |

€T vector of decision variables w € () vector of uncertain parameters
Bottlenecks for risk management : Current markets:
* Scenario generation * No ditferentiation between extreme
* Accelerated computations and normal reserve
* Risk representation * No direct interface for risk

management (VB, CtD, etc)

Concerns:
* Do we have enough data? It extremes are not considered , why

What about guarantees and solution accuracy? should producers care?
Do we target the right risk?
Who will use it?



How to Fit Risk Into This Pipeline?

Consider a decision-making problem (SCUC/SCED): MiN, e X (w) C(z,w)

| |
| |
| . . |
| C'(-)  objective (cost) function X feasible solution space |
| |
| |

T vector of decision variables w € () vector of uncertain parameters

Uncertainty arises from

* Forecast errors (renewables and demand) Uncertainty |\ 2
* Sudden unavailability of resources, full or partial
*  Complex events Var(X(w))
1
: . . , N
Risk arises from uncertainty, regardless of its source Risk Q‘y
* Physical risk (e.g. constraint violation or operational infeasibility — overload =
or power mismatch) IF(X(w)) = f[Var(X(w))]
* Financial risk (e.g shortfall from physical risk — profit, liquidity, market EE—
losses) —
* Risk = Probability X Consequence Securities m
* Various risk metrics exist (CVaR, VaR, CoVaR, etc)

n(X(w)) = g[Var(X (w))]



Bottlenecks Cause “Missing Money” Effects: A Weather Example

I
Electric shock
United States, Texas, wholesale electricity price* ) .
Hourly average, $000 per MWh Low avallablhty
10 led to high
° prices
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Bottlenecks Cause “Missing Money” Effects: A Weather Example

Texas did the wrong thing (once again), it is obvious:
* Reduced prices cap led to less incentives to improve availability and participate in the
market, especially for high-stake hours
* High demand
* Low availability of supply
* A combination of both

The important and overlooked argument is that market prices didn’t help

* Let’s discuss ideal-world prices / price cap

“ideal” price " Ay = Ai -0 + (A =A%) - (1 T )’
marginal price of probability of probability of an

energy normal operations “oops”



Out of Market Interventions Can be Much Worse

What is the spot market for wholesale
electricity,and how will AEMO’s
decision to suspend it affect consumers?

By Tobias Jurss-Lewis

Energy Industry

Wed 15 Jun 2022

STATE

Texas Supreme Court sides with

state regulators on $16 billion winter

storm overcha rges

Tuesday, 12:15 p.m.
4.4 million customers (35

$1B+ in

.1%)

v

“lld‘é)sses/ hr

Several important “market” limitations:

* Limited demand elasticity + shielded
consumption
* No incentives to stay in the market,
especially during critical hours
* High demand
* Low availability of supply
* A combination of both

* Self-commitment is always an option

1GW producer lost

opportunity of
~$100K/hr



“Missing Money” as a Problem Statement

Private risk evaluation of “firm” agent i Private risk evaluation of “variable” agentj
max R;|[\ipg.i(w) + Xi] max R;[Aijpu,j(w) — Xy
;PG *3,PU,J
PG,i(w), i € O; pu,j(w), a; € Oy
Social risk
PrA evaluation

> VaR(1-€) pU,j:i —I- pG’?’ = pD,'i (AZ)

Zaz’:j — ! 3(Xz':j)
.| 1]

CVaR(1-€) < o* w 1

What is “worst-case” w* .. . .. e
Two missing parts: (i) extremes and (i1) volatility
and "optimal” €? gPp ( ) ( ) v

(€)




What is Needed to Overcome “Missing Money” Effects?

Risk management requires thinking across three dimensions of
representation of risks — (i) modeling extreme outcomes and
variability, (i) endogenizing them into decision support tools
and (iii) alignment of incentives and risk management goals.



Aligning Private and Social Risks: Represent Extreme Outcomes

Probability

04F o  Scenarios i Sample traillgng data x { Train D |
A~ Ldara O
:’ Interval/Robust @ : :O ® Judgment Accuracy
0.3} CC (analyt.) - | Label y ° _.8 L log([)(xﬁd“"))
> Discriminator oall— (= ;
0.2} ) [ S @ o] [l n01)
z~P, ° 3
Generator DC-OPF Optimal dispatching cost
01 B Labely (G) G(Z’Hg |y) model (‘*(G(Z,Bg |y))
0 0 T T Train G
Random variable
Hard to sample extreme Hard to implement physics
events of extreme events
Risk modeling is largely informed by C = N(@)S; — N(d») Ket
. . . . — 1) t — 9
financial engineering, benefiting from: p 2
. . In E’ +(r+ "?}t
* Lack of physical complexity where d; = 7
o

* Randomness . _ (S

* Rather “smooth” jumps



Aligning Private and Social Risks: Endogenize Extreme Outcomes

More generic and nuanced approaches to sample less-likely events is needed

minin&ize J(u) P(F(u.£) > 2)
UuUe u, 1
subject to P (F(u,§) > 2) < a, where a < 1. — ¢ € argmin {I(€) : F(u,€) > 2}.
EcE
Traditional risk Risk constraints with
constraints large-deviation theory
Challenges:

* Dependon the indicator function I(+)

* Includes inner minimization for &*

* Notclear how to compute the optimal solution
* Likely to be extremely conservative



Aligning Private and Social Risks: Endogenize Extreme Outcomes

minimize J(u)
ueY

subject to Pg(u,z2,£") < «
£ €argmin{I(§): F(u,§) > 2}

=

Employ a three-step strategy:
* Reformulate the inner level using first-order conditions

* Postulate the indicator function
 Obtain single-level approximation



Aligning Private and Social Risks: Endogenize Extreme Outcomes

minimize J(u)
ucU

subject to  Py(u,2,£") < o Cannot be solved at scale and efficiently
& € argmin{I(§) : F(u,&) > z}

€=

minimize J(u)
u,E*,A

subject to u €U, £* €, A€ R, Note that = is replaced with =
Pi(u, 2,6%) < a, * No convexity of F(-) is required

F(u,§") = 2, e |ndicator functionis low
VI(E") = AVeF (u, £7).

minimize J(u) Single-level approximation
subject to welU, € E, n* e R, A e Ry  Ensures convexity
Pk(uaz: E*) < a, °

Provides guarantees
F(u, ") = z, . C
T = AVeF (1,69, aptures extreme cases
& = VS(nY). * Can be used for pricing




Aligning Private and Social Risks: Endogenize Extreme Outcomes

ueY

minimize J(u)

subject to Pi(u, z,&") < a
& € argmin{I(§) : F(u,&) > z}

€=

minimize
u,6*, A

subject to

J(u)

uel, & e€E, AeRy
Pi(u, z,£) < a,

F(u, &) = 2,

VI(E*) = AVeF(u,&).

minimize
u,§* n* A

J(u)

subject to wel, & €E, n*eR”, e R,y

Py(u,2,8") < o
F(u,&") = z,

n" = AVeF (u,£"),
& =VS(n).

Cannot be solved at scale and efficiently

Note that > is replaced with =

* No convexity of F(-) is required

e |ndicator functionis low

Treatment of risk via Taylor’s

expansion

or

Pl(u:z= g*) = (I)(_ V 2‘[(6*)) =

O(—I€" — plls-1)-

Py(u, 2,6*) m B(— ||€* — pllg-1) det 5 (H) ™2




Aligning Private and Social Risks: Example

Chance-constrained ED

LDT-constrained ED

min B[ 3 Ca(pn())]

neg

s.t. an-i—W—d:O
neg

Pn() = pn + 6,()
P [pn2n<pn( )S
=

> 6ulo)

neg

mln E. ZC pn,an,ﬁn)]

p,o,
s.t. an, Bn, pn >0 Vn
IP [pmzn < pn _ anw
<pM* V¥n|>1-—c¢
_Pw [anm S Pn — npW — ﬁnw
S pnma:r’ Vn] Z 1 _ 6e:r:t
n
> an =1
n
2 Bn=1
n
Pk(pnaanaﬁn) <1l- € Vn

min <
n

Pn — (an + ﬁn) w S pzm:n}

w* € argmin{/(w) :




Aligning Private and Social Risks: Example
Single-level LDT-constrained ED

p,a’?’g{ N E, [Z C,(Pry s ﬁn)] Extremely conservative!
s.t. QpyBnsPn = 0,A" >0 Vn Here is an idea: use weighted chance
65 : pn—p"* 4+ 0,6, <0 Vn constraints to alleviate conservatism!
() : =P +pn (0n + Bn) w* =0 Vn
(v): 72w+ @) <0
(&n): Z7'w* — (an + Bp)A* =0 Yn

(7): Y pont+@—d=0

(p) : Za.n—lz()




Aligning Private and Social Risks: Example

Weighted chance constraints to avold conservatism by regulating your rate of response (risk)

LDT-WCC

°©

3

=

£

o

2

2

o

E

E .............................. et mnsint:

) : y(w*)

; Overload (y({w))
......................... e e

» V Y

E_ (p): energy (T7): energy price (p): energy (17): energy price (p): energy (17): energy price

S : : : (a): r. reserve (p): r. reserve price (a): r. reserve (p): r. reserve price

o (a): r. reserve (p): r. reserve price (B): e. reserve  (X): e. reserve price (B): e. reserve  (X): e. reserve price




Aligning Private and Social Risks: Computable Equilibrium!

Solve a WCC-
relaxation

Check WC
feasibility

Optimal
solution

A

Add a linea
cut

1) Theorem 1: Equilibrium payments: Lets
{p:,ar, B w*,A*} be the optimal solution of the
problem [ref] and let {m,p,x} be the dual variables.
Then. {p},a’,B:Vn},w*, \*, 7, p,x} constitutes a market
equilibrium.

A~

e The marker clears at > ' p, — W =d, Y «, = 1, and

e Each producer maximize its profit under the payment
L'y = 7pn + pan + XBn
First given a (w*, \) if {p},, o, B:Vn} is feasible and solved to
optimality, optimal values {p*, a*, 3*Vn} must satisfy equal-
ity constraints. And as the result  p! —w =d, Y o =1,
and > 6 =1

Important: completes market with risk, while ensuring
cost recovery and revenue adequacy.



Aligning Private and Social Risks: Results

Solvable for a realistically large instance:

e 2209 nodes
e 2866 nodes
* June 2022 data set

Solver: Gurobi

One instance w/out cutting planes: 19.4 s
One instance w/cutting planes: 3.7 s

Cost savings (relative to non-WCC case) — 3.9%




Aligning Private and Social Risks: Results

Considering extreme events does change dispatch and reserve allocation

TABLE I: Optimal primal results

Energy (p) & Reserves («, 3) dispatch

Gl G2 Model Variables | Gl

: * MW] [[40]

Cheap K ) Intermediate CC L [[%] ! o

p* IMW] [40]

LDT-WCC || * [%] |0 0.04 | 0.96 | «—
g* %] 0
~o p* [MW]
G3 Load LDTCC || ot (% [0 [0 11
Expensive B*[%] |0
Considering extreme events does change reserve, not energy prices

TABLE II: Optimal dual results and total cost

Energy (m) & Reserves (p, x) prices

hlodel ™ [$MW] | p* [$MW] | x* [$/MW] || T. Cost [$]
EC 35.30 89.99 : 3502.18
LDT-WCC 35.46 80.42 100.75 3591.03 l
LDT-CC 35.41 90.55 120.00 3621.31

The most
diversified
reserve

portfolio



Aligning Private and Social Risks: Larger Instances

TABLE IV: Optimal dual results [$/MW]

7 Maine Price CC LDT—WCC LDT—CC
- Top 55.84 56.44 56.18
e i 125.61 126.29 126.01
—o ™ evasss || [141.93 142.98 142.32
o) | - 125.61 126.29 126.01
. o 51.50 52.19 51.90
RI . . .
— Abrtedbciey 7r1§ EMASS 207.02 207.63 207.39
e i 118.08 118.77 118.48
SE Mass . |lioe s 107.48 107.19
Connecicut | oL Reg. Res | p* 280 850 1049.22
e R) Ext. Res X : 1500 1699.224

Pay more upfront to avoid being sorry
Consistent zonal energy prices and




So What?

* Let’s discuss 1deal-world prices:
Aij = Ai; - 7Y + (A —4i) - (1 — 7?)

* We found the best proxy by introducing an additional (extreme) reserve product and
completing market design with risk:

Aij =A% -m
x~E, [(/1'"“’“ A7;(@®) - (1 — )]

* Still, it doesn’t solve the problem of price volatility



Price Volatility

Price volatility drives consumer’s risk exposure (recall largely inelastic demand):
* Volatile prices can still be efficient though

* Hedges against volatility exists (e.g., VB)

* Important point: we do not seek to eliminate volatility

* Goal: Complete markets with information about volatility

RT Load — DA Load

A
High HIGH VERY HIGH

Unit commitment decisions

.

e Day-Ahead Real-Time Adversarial
edium HIGH

SCUC Problem DCOPF Problem

Low or \_/

negative Adversarial scenario

»
Low or Medium High RT LMP
negative



Price Volatility

Adversarial problem can come in a variety of forms, but there are two conditions:
* Must be internalized with current market designs
* Must be “computable”

* Must be “priceable”

Z ( Z (hgt 4 Csta‘rtvgt e Cg)ownwgt) Decomposable problem:
teTPA  geg - No-good, L-shaped, LBBD cuts
. Z C'VOLL Umnet) + oV (y) - Solves as quick as SCUC
ieEN y*
Typ ICa l pMaster DCOPF—A(y*)
SCUC/SCED (y partially fixed for (solved via
constraints non-critical hours) grid search)
5 _ Cutting planes
RTE &
! [ — glé%( Nt Z Z Alt y w [ — D; )+ (added via branch-and-cut)
Proxy for / BETFE del }\RT rice X Power
consumer tisk b

mismatch
exposure



Price Volatility

TABLE I: COMPARISON OF RISK-AWARE AND DETERMINISTIC 160
SCUC PROBLEMS FOR p =1 140 - 2
R4 RY | Save Deter. Cost DA cost  Consr. 120 {
(k$) cost (M$)  red. (%) diff ($) exp. (k$) @ 100+ g »
0.1 0.2 0.00 551 0.00 0.00 8.53 v 80 H
0.1 0.4 0.12 5.37 0.00 116.16 8.53 £ 604 . +
0.1 06 0.00 5.37 0.00 0.00 8.89 a, : e
0.1 0.8 42.29 5.41 0.78 116.16 8.89 401 . . G
0.1 1.0 4228 5.41 0.78  123.50 8.89 20 T SR !
0.2 0.2 114.71 5.50 2.09 116.16 17.78 0 . . . . . :
*(0).2 0.4 114.14 5.50 2.08 688.03 17.78 DA dt. DA st. DA ra. RT dt. RT st. RT ra.
0.2 0.6 115.74 5.50 231 1446.22 16.76
0.2 0.8 108.58 5.50 1.98 8130.20 17.78 (a)
*(.2 1.0 115.64 5.50 2.10 1072.06 17.78
- :
Instance solved with 3 root cuts. 100 120
+ —_
" 4 A
‘é’ 304 e:: 100
* Consumer risk exposure is reduced at no 2 2 soy
S 60 k=
. X
expense to the system etticiency. o | EE| . 60 ¥
: - £ 40 O
* Risk management is not orthogonal to 5 3 40
c | .
: o 20+ Q 1
efficiency. : = 20 é
. { { { O T T T 0 T T 1
Dramatic reduction in consumer exposure = e



Concluding Thoughts

* Risk management scales to realistically large networks

* Extreme outcomes and volatility are considered endogenously and
without computationally intensive sampling

* We provide a robust pricing framework that captures option-value
of resiliency

* This framework can be adapted to other applications



Thank you! Questions? Suggestions? Feedback?

* We are constantly looking for Ph.D. applicants
* Reach outto us at ydvorkil@jhu.edu

 Collaborators:
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Tomas Zhirui Daniel Cheng
_ _ Bienstock Guo
Tapia Liang
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