

**Risk Management and Clean Energy Transition** 

Yury Dvorkin







КĶ Imperial College ondon





Future Power Markets **ESIG** Forum

6





EP











## What Matters for Efficient Risk Management?

# Make <u>Better</u> Decisions with <u>Less</u>

#### Better:

Cost, reliability, emissions Physics-informed models Market suitable Fast computations Insight discovery Data requirements Computational costs Malfunction Distrust

Less:

# **A Typical Decision-Making Pipeline**

Consider a decision-making problem (SCUC/SCED):  $\min_{x \in \mathcal{X}(\omega)} C(x, \omega)$ 

- $C(\cdot)$  objective (cost) function
  - x vector of decision variables

 ${\mathcal X}$  feasible solution space

#### iables $\omega \in \Omega$ vector of uncertain parameters

#### Bottlenecks for risk management :

- Scenario generation
- Accelerated computations
- Risk representation

#### Concerns:

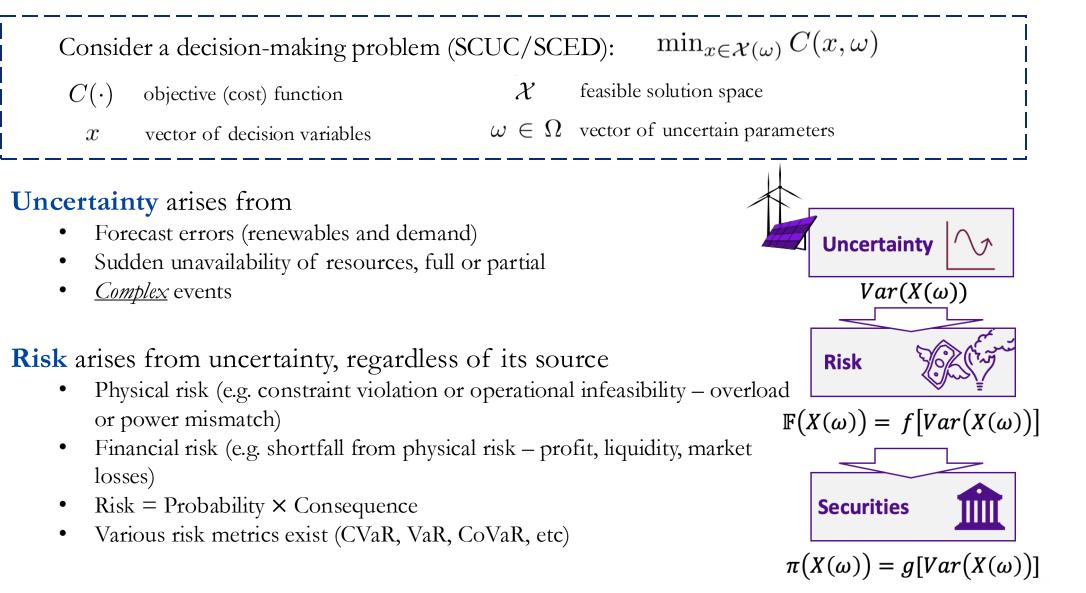
- Do we have enough data?
- What about guarantees and solution accuracy?
- Do we target the right risk?
- Who will use it?

#### Current markets:

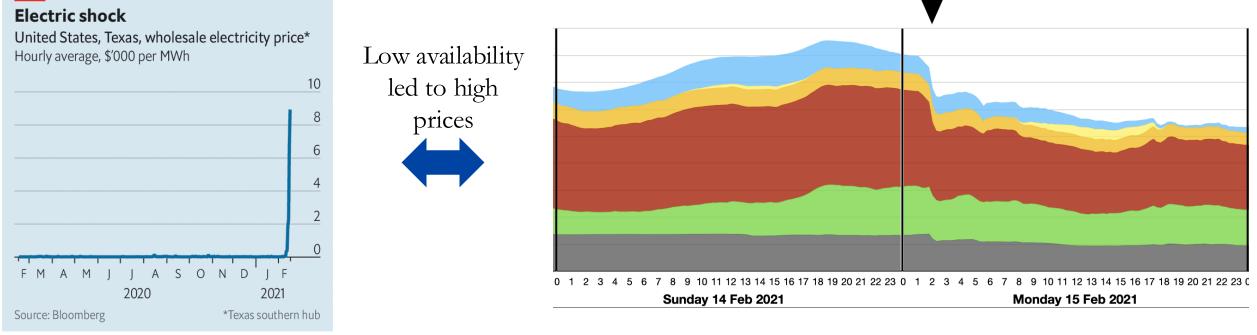
- No differentiation between extreme and normal reserve
- No <u>direct interface</u> for risk management (VB, CfD, etc)

If extremes are not considered, why should producers care?

## **How to Fit Risk Into This Pipeline?**



# **Bottlenecks Cause "Missing Money" Effects: A Weather Example**



The Economist

Commodities

# Texas cuts \$9,000 power price cap after February freeze

Reuters

December 3, 2021 11:53 AM EST · Updated 2 years ago

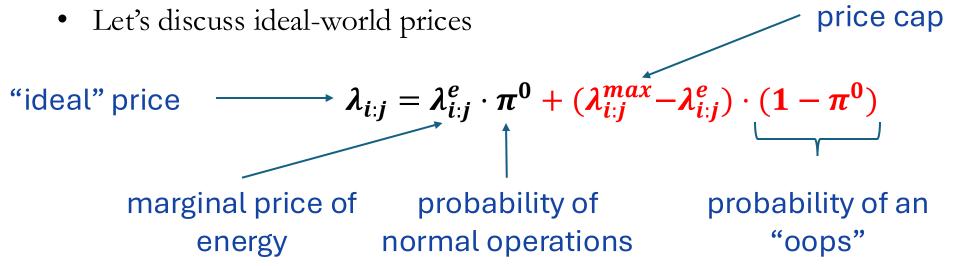


## **Bottlenecks Cause "Missing Money" Effects: A Weather Example**

#### Texas did the wrong thing (once again), it is obvious:

- Reduced prices cap led to less incentives to improve availability and participate in the market, especially for high-stake hours
  - High demand
  - Low availability of supply
  - A combination of both

The important and overlooked argument is that market prices didn't help



## **Out of Market Interventions Can be Much Worse**

#### What is the spot market for wholesale electricity, and how will AEMO's decision to suspend it affect consumers?

By Tobias Jurss-Lewis

Energy Industry

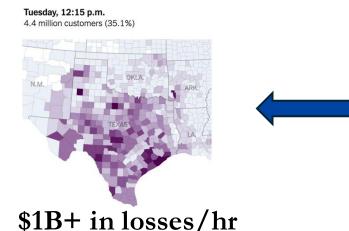
Wed 15 Jun 2022

STATE

#### Texas Supreme Court sides with state regulators on \$16 billion winter storm overcharges

Several important "market" limitations:

- Limited demand elasticity + shielded consumption
- No incentives to stay in the market, especially during critical hours
  - High demand
  - Low availability of supply
  - A combination of both
- Self-commitment is always an option



1GW producer lost opportunity of ~\$100K/hr

## "Missing Money" as a Problem Statement

Private risk evaluation of "firm" agent i

Pr /

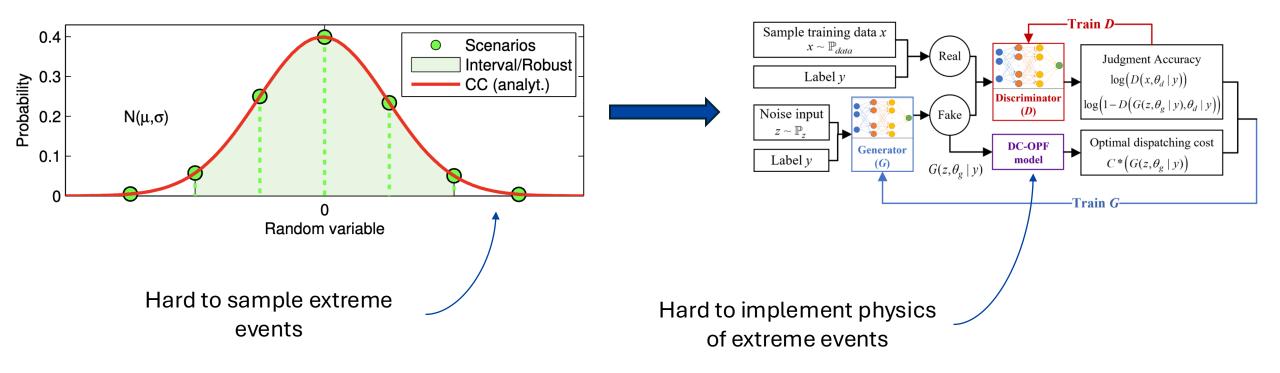
 $\max_{\alpha_j, p_{U,j}} \mathbb{R}_j \left[ \lambda_{i:j} p_{U,j}(\omega) - \chi_{i:j} \alpha_j \right]$  $p_{U,j}(\omega), \alpha_j \in \mathcal{O}_j$  $\max_{\alpha_i, p_{G,i}} \mathbb{R}_i [\lambda_i p_{G,i}(\omega) + \chi_i \alpha_i]$  $p_{G,i}(\omega), \alpha_i \in \mathcal{O}_i$ Social risk evaluation VaR(1-ε)  $:(\lambda_i)$  $p_{U,j:i} + p_{G,i} = p_{D,i}$  $\sum \alpha_{i:j} = 1$  $:(\chi_{i:j})$ (1-ε) (ε) CVaR(1-ε) ← ω\* ω What is "worst-case"  $\omega^*$ Two missing parts: (i) extremes and (ii) volatility and "optimal"  $\epsilon$ ?

Private risk evaluation of "variable" agent j

#### What is Needed to Overcome "Missing Money" Effects?

**Risk management** requires thinking across three dimensions of representation of risks – (i) **modeling extreme outcomes and variability**, (ii) **endogenizing them into decision support tools** and (iii) **alignment of incentives and risk management goals.** 

# Aligning Private and Social Risks: Represent Extreme Outcomes



 $C = N(d_1)S_t - N(d_2)Ke^{-rt}$ where  $d_1 = rac{\lnrac{S_t}{K} + (r + rac{\sigma^2}{2})t}{\sigma\sqrt{t}}$ and  $d_2 = d_1 - \sigma\sqrt{t}$ 

# Risk modeling is largely informed by financial engineering, benefiting from:

- Lack of physical complexity
- Randomness
- Rather "smooth" jumps

More generic and nuanced approaches to sample *less-likely* events is needed

| $\underset{u\in\mathcal{U}}{\operatorname{minimize}}$ | J(u)                                                |                        |
|-------------------------------------------------------|-----------------------------------------------------|------------------------|
| subject to                                            | $\mathbb{P}\left(F(u,\xi) \ge z\right) \le \alpha,$ | where $\alpha \ll 1$ . |

Traditional risk constraints

Challenges:

- Depend on the indicator function  $I(\cdot)$
- Includes inner minimization for  $\xi^*$
- Not clear how to compute the optimal solution
- Likely to be extremely conservative

 $\mathbb{P}(F(u,\xi) \geq z) \ \xi^\star \in rgmin_{\xi\in\Xi} \left\{ I(\xi) : F(u,\xi) \geq z 
ight\},$ 

Risk constraints with large-deviation theory

$$\begin{array}{ll} \underset{u \in \mathcal{U}}{\text{minimize}} & J(u) \\ \text{subject to} & P_k(u, z, \xi^\star) \leq \alpha \\ & \xi^\star \in \underset{\xi \in \Xi}{\operatorname{argmin}} \left\{ I(\xi) : F(u, \xi) \geq z \right\} \end{array}$$

Employ a three-step strategy:

- Reformulate the inner level using first-order conditions
- Postulate the indicator function
- Obtain single-level approximation

```
\underset{u \in \mathcal{U}}{\text{minimize}}
                           J(u)
subject to P_k(u, z, \xi^*) \leq \alpha
                           \xi^{\star} \in \operatorname{argmin} \left\{ I(\xi) : F(u,\xi) \ge z \right\}
                                           €∈Ξ
     \underset{u,\xi^{\star},\lambda}{\text{minimize}}
                                J(u)
     subject to u \in \mathcal{U}, \xi^* \in \Xi, \lambda \in \mathbb{R}_+
                                P_k(u, z, \xi^\star) \leq \alpha,
                                F(u,\xi^{\star}) = z,
                                \nabla I(\xi^{\star}) = \lambda \nabla_{\xi} F(u, \xi^{\star}).
```

```
\begin{array}{ll} \underset{u,\xi^{\star},\eta^{\star},\lambda}{\text{minimize}} & J(u) \\ \text{subject to} & u \in \mathcal{U}, \ \xi^{\star} \in \Xi, \ \eta^{\star} \in \mathbb{R}^{n}, \ \lambda \in \mathbb{R}_{+} \\ & P_{k}(u,z,\xi^{\star}) \leq \alpha, \\ & F(u,\xi^{\star}) = z, \\ & \eta^{\star} = \lambda \nabla_{\xi} F(u,\xi^{\star}), \\ & \xi^{\star} = \nabla S(\eta^{\star}). \end{array}
```

Cannot be solved at scale and efficiently

Note that  $\geq$  is replaced with =

- No convexity of  $F(\cdot)$  is required
- Indicator function is low

Single-level approximation

- Ensures convexity
- Provides guarantees
- Captures extreme cases
- Can be used for pricing

```
\underset{u \in \mathcal{U}}{\text{minimize}}
                           J(u)
subject to P_k(u, z, \xi^*) \leq \alpha
                           \xi^{\star} \in \operatorname{argmin} \left\{ I(\xi) : F(u,\xi) \ge z \right\}
                                            €∈Ξ
     \underset{u,\xi^{\star},\lambda}{\text{minimize}}
                                 J(u)
     subject to u \in \mathcal{U}, \xi^* \in \Xi, \lambda \in \mathbb{R}_+
                                P_k(u, z, \xi^\star) \leq \alpha,
                                 F(u,\xi^{\star}) = z,
                                 \nabla I(\xi^{\star}) = \lambda \nabla_{\xi} F(u, \xi^{\star}).
 \underset{u,\xi^{\star},\eta^{\star},\lambda}{\text{minimize}}
                             J(u)
 subject to u \in \mathcal{U}, \xi^* \in \Xi, \eta^* \in \mathbb{R}^n, \lambda \in \mathbb{R}_+
                            P_k(u, z, \xi^\star) \leq \alpha,
                            F(u,\xi^{\star}) = z,
```

 $\eta^{\star} = \lambda \nabla_{\xi} F(u, \xi^{\star}),$ 

 $\xi^{\star} = \nabla S(\eta^{\star}).$ 

Cannot be solved at scale and efficiently

Note that  $\geq$  is replaced with =

- No convexity of  $F(\cdot)$  is required
- Indicator function is low

Treatment of risk via Taylor's expansion

$$P_{1}(u, z, \xi^{\star}) = \Phi(-\sqrt{2I(\xi^{\star})}) = \Phi(-\|\xi^{\star} - \mu\|_{\Sigma^{-1}}).$$

$$Or$$

$$P_{2}(u, z, \xi^{\star}) \approx \Phi(-\|\xi^{\star} - \mu\|_{\Sigma^{-1}}) \det_{\perp \hat{n}} (H)^{-\frac{1}{2}}$$

## **Aligning Private and Social Risks: Example**

LDT-constrained ED **Chance-constrained ED**  $\min_{p,\alpha,\beta} \mathbb{E}_{\omega} \left[ \sum C_n(p_n, \alpha_n, \beta_n) \right]$  $\min_{\Xi} \mathbb{E}_{\omega} \Big[ \sum_{n \in \mathcal{C}} C_n(p_n(\Omega)) \Big]$ s.t.  $\alpha_n, \beta_n, p_n \ge 0$  $\forall n$  $s.t. \qquad \sum p_n + \hat{W} - d = 0$  $\mathbb{P}_{\omega}[p_n^{min} \le p_n - \alpha_n \omega]$  $n \in \mathcal{G}$  $\leq p_n^{max}, \ \forall n \geq 1 - \epsilon$  $p_n(\Omega) = p_n + \delta_n(\Omega)$  $\forall n$  $\mathbb{P}_{\omega}[p_n^{min} \le p_n - \alpha_n \omega - \beta_n \omega]$  $\mathbb{P}_{\omega}\left[p_n^{min} \le p_n(\Omega) \le p_n^{max}\right] \ge 1 - \epsilon$  $\forall n$  $\leq p_n^{max}, \ \forall n] \geq 1 - \epsilon^{ext}$  $\sum \delta_n(\Omega) - \Omega = 0$  $\sum p_n + \hat{W} - d = 0$  $n \in \mathcal{G}$  $\sum \alpha_n = 1$  $\sum \beta_n = 1$ ext D / 11

$$P_{k}(p_{n}, \alpha_{n}, \beta_{n}) \leq 1 - \epsilon^{corr} \qquad \forall n$$
  

$$\omega^{*} \in \arg\min_{\omega} \{I(\omega) : p_{n}^{min} \leq p_{n} - (\alpha_{n} + \beta_{n}) \ \omega \leq p_{n}^{max} \}$$

## Aligning Private and Social Risks: Example

#### Single-level LDT-constrained ED

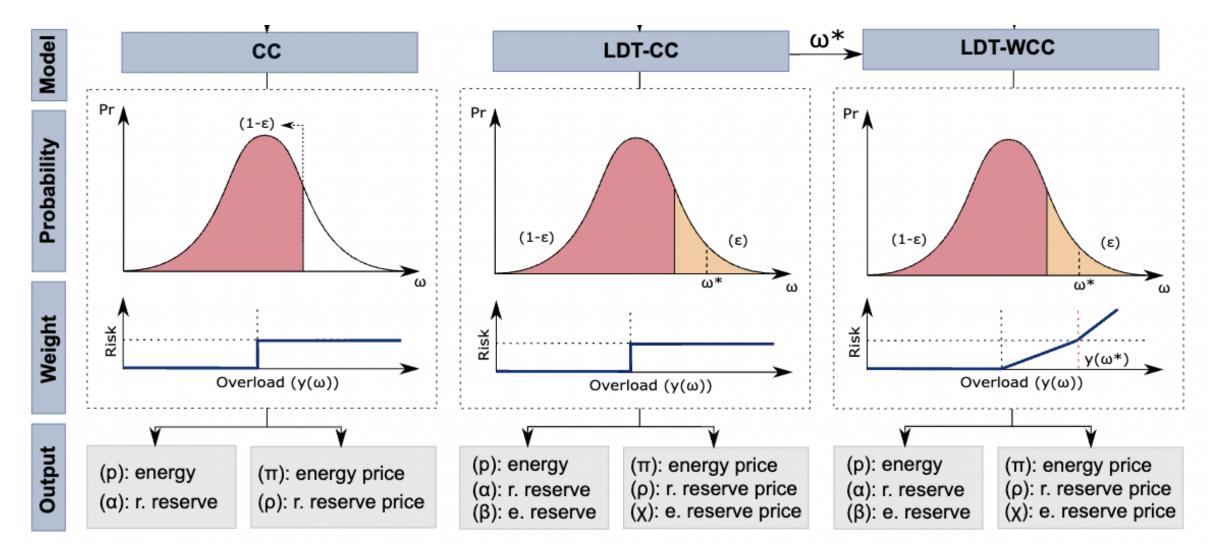
| $\min_{p,lpha,eta,\omega^*,\lambda^*}$ | $\mathbb{E}_{\omega}\big[\sum_{n}C_{n}(p_{n},\alpha_{n},\beta_{n})\big]$ |             |
|----------------------------------------|--------------------------------------------------------------------------|-------------|
| s.t.                                   | $\alpha_n,\beta_n,p_n\geq 0,\lambda^*>0$                                 | $\forall n$ |
| $(\delta_n^+)$ :                       | $p_n - p_n^{max} + \alpha_n \hat{\sigma}_n \le 0$                        | $\forall n$ |
| $(\mu_n^+)$ :                          | $-p_n^{max} + p_n - (\alpha_n + \beta_n) \ \omega^* = 0$                 | $\forall n$ |
| ( u) :                                 | $\Sigma^{-1/2}\omega^* + \Phi^{-1}(\epsilon^{ext}) \le 0$                |             |
| $(\xi_n)$ :                            | $\Sigma^{-1}\omega^* - (\alpha_n + \beta_n)\lambda^* = 0$                | $\forall n$ |
| $(\pi)$ :                              | $\sum_{n} p_n + \hat{w} - d = 0$                                         |             |
| ( ho):                                 | $\sum_{n=1}^{n} \alpha_n - 1 = 0$                                        |             |
| $(\chi):$                              | $\sum_{n}^{n} \beta_{n} - 1 = 0$                                         |             |

Extremely conservative!

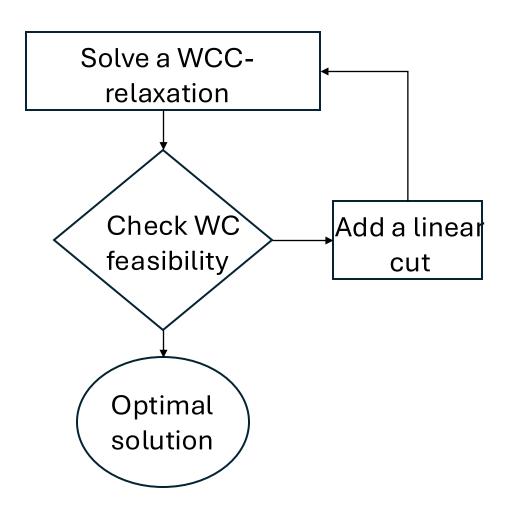
Here is an idea: use weighted chance constraints to alleviate conservatism!

## **Aligning Private and Social Risks: Example**

Weighted chance constraints to avoid conservatism by regulating your rate of response (risk)



#### Aligning Private and Social Risks: Computable Equilibrium!



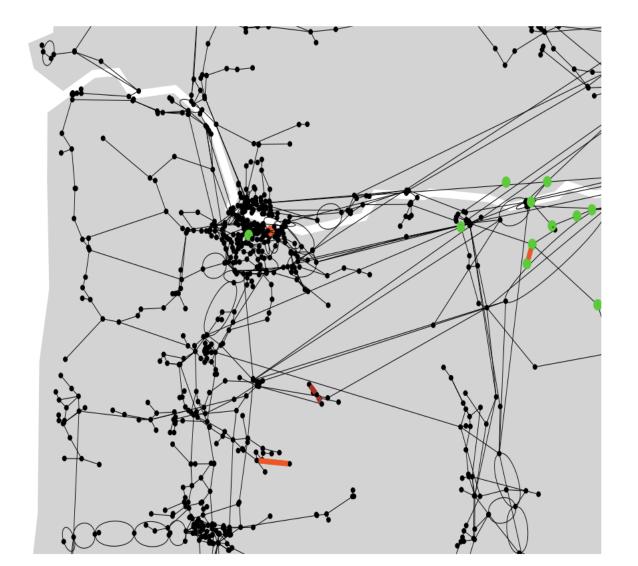
1) Theorem 1: Equilibrium payments: Lets  $\{p_n^*, \alpha_n^*, \beta_n^*, \omega^*, \lambda^*\}$  be the optimal solution of the problem [ref] and let  $\{\pi, \rho, \chi\}$  be the dual variables. Then.  $\{p_n^*, \alpha_n^*, \beta_n^* \forall n\}, \omega^*, \lambda^*, \pi, \rho, \chi\}$  constitutes a market equilibrium.

- The marker clears at  $\sum p_n \hat{W} = d$ ,  $\sum \alpha_n = 1$ , and  $\sum \beta_n = 1$
- Each producer maximize its profit under the payment  $\Gamma_n = \pi p_n + \rho \alpha_n + \chi \beta_n$

First given a  $(\omega^*, \lambda)$  if  $\{p_n^*, \alpha_n^*, \beta_n^* \forall n\}$  is feasible and solved to optimality, optimal values  $\{p^*, \alpha^*, \beta^* \forall n\}$  must satisfy equality constraints. And as the result  $\sum p_n^* - \hat{w} = d$ ,  $\sum \alpha_n^* = 1$ , and  $\sum \beta_n^* = 1$ 

**Important**: completes market with risk, while ensuring cost recovery and revenue adequacy.

#### **Aligning Private and Social Risks: Results**



Solvable for a realistically large instance:

- 2209 nodes
- 2866 nodes
- June 2022 data set

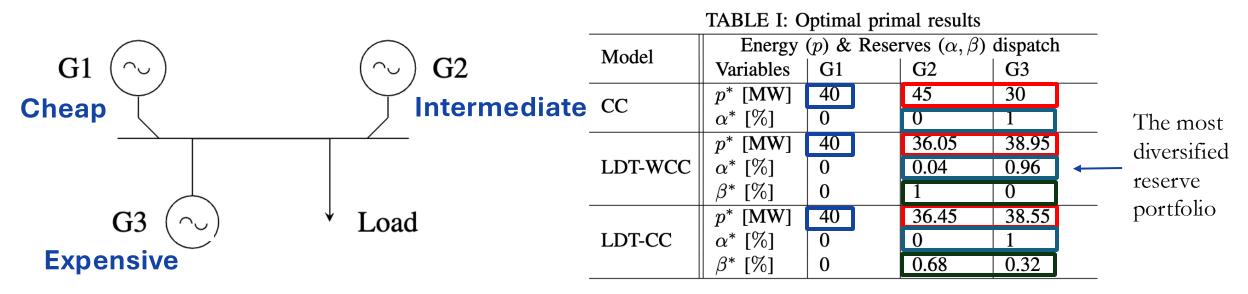
#### Solver: Gurobi

One instance w/out cutting planes: 19.4 s One instance w/cutting planes: 3.7 s

Cost savings (relative to non-WCC case) -3.9%

## Aligning Private and Social Risks: Results

Considering extreme events does change <u>dispatch</u> and <u>reserve</u> allocation

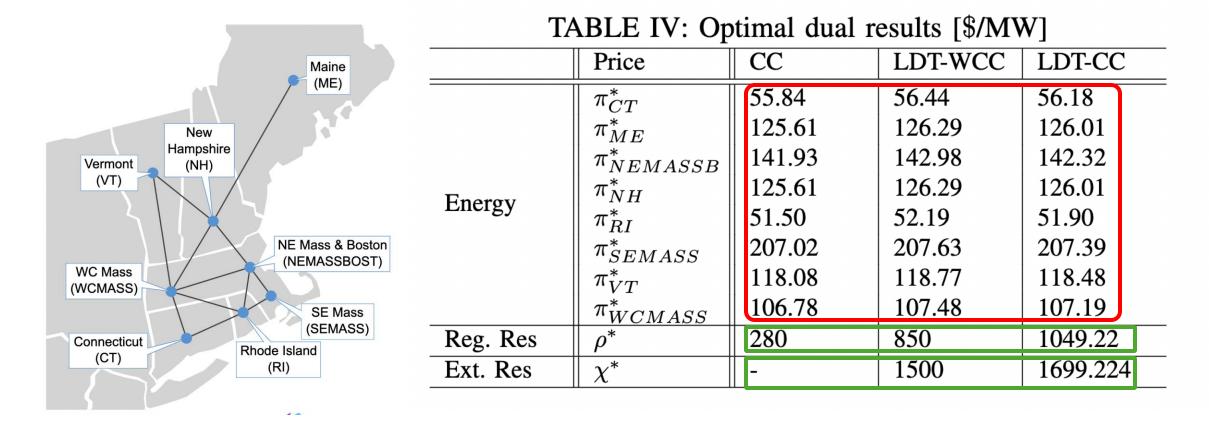


Considering extreme events does change reserve, not energy prices

| Model   | Energy $(\pi)$ & Reserves $(\rho, \chi)$ prices |  |                  |  |              |  |         |  |
|---------|-------------------------------------------------|--|------------------|--|--------------|--|---------|--|
|         | $\pi^*$ [\$/MW] $\mid  ho^*$ [\$/MW] $\mid$     |  | $\chi^*$ [\$/MW] |  | T. Cost [\$] |  |         |  |
| CC      | 35.30                                           |  | 89.99            |  | -            |  | 3502.18 |  |
| LDT-WCC | 35.46                                           |  | 80.42            |  | 100.75       |  | 3591.03 |  |
| LDT-CC  | 35.41                                           |  | 90.55            |  | 120.00       |  | 3621.31 |  |

TABLE II: Optimal dual results and total cost

## **Aligning Private and Social Risks: Larger Instances**



Pay more upfront to avoid being sorry Consistent zonal energy prices and monotonic (to risk) reserve prices.

## So What?

• Let's discuss ideal-world prices:

$$\lambda_{i:j} = \lambda_{i:j}^e \cdot \pi^0 + (\lambda_{i:j}^{max} - \lambda_{i:j}^e) \cdot (1 - \pi^0)$$

• We found the best proxy by introducing an additional (extreme) reserve product and completing market design with risk:

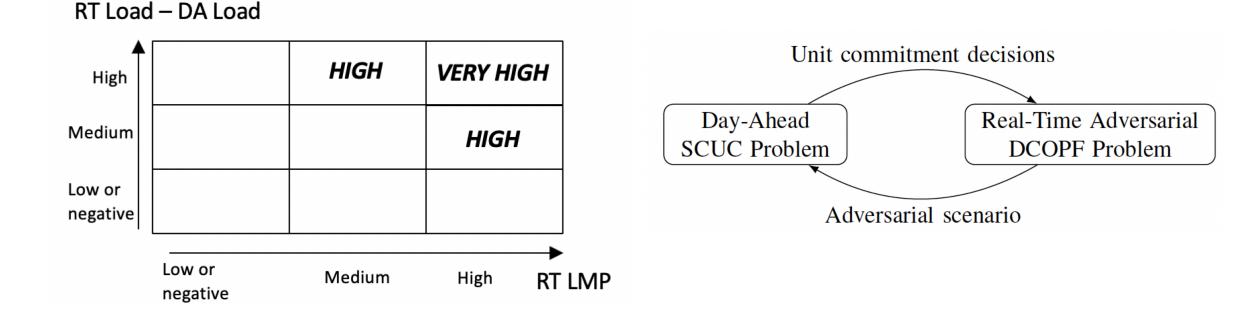
$$\lambda_{i:j} = \lambda_{i:j}^{e} \cdot \pi^{0}$$
  
$$\chi \sim \mathbf{E}_{\pi^{0}} [(\lambda_{i:j}^{max} - \lambda_{i:j}^{e}(\pi^{0}) \cdot (1 - \pi^{0})]$$

• Still, it doesn't solve the problem of price volatility

## **Price Volatility**

Price volatility drives consumer's risk exposure (recall largely inelastic demand):

- Volatile prices can still be efficient though
- Hedges against volatility exists (e.g., VB)
- Important point: we do <u>not</u> seek to eliminate volatility
- Goal: Complete markets with information about volatility



## **Price Volatility**

Adversarial problem can come in a variety of forms, but there are two conditions:

- Must be internalized with current market designs
- Must be "computable"
- Must be "priceable"

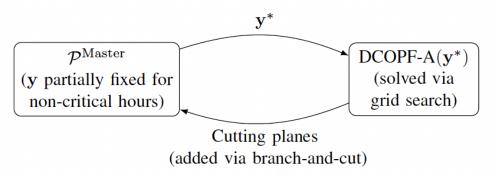
$$\min \sum_{t \in \mathcal{T}^{DA}} \left( \sum_{g \in \mathcal{G}} \left( h_{gt} + C_g^{\text{Start}} v_{gt} + C_g^{\text{Down}} w_{gt} \right) + \sum_{i \in \mathcal{N}} C^{\text{VOLL}} p_{it}^{\text{Unmet}} \right) + \rho \hat{V}(\mathbf{y})$$

$$Typical SCUC/SCED constraints$$

$$\hat{V}(\mathbf{y}) = \max_{\boldsymbol{\omega} \in \Omega} \frac{1}{N^{\text{tp}}} \sum_{t \in \mathcal{T}^{\text{RT}}} \sum_{i \in \mathcal{N}} \frac{\lambda_{it}(\mathbf{y}, \boldsymbol{\omega}) (d_{it}^{\text{RT}} - \bar{D}_{it})^{+}}{RT \text{ price}} Power mismatch}$$
Proxy for consumer risk exposure

Decomposable problem:

- No-good, L-shaped, LBBD cuts
- Solves as quick as SCUC



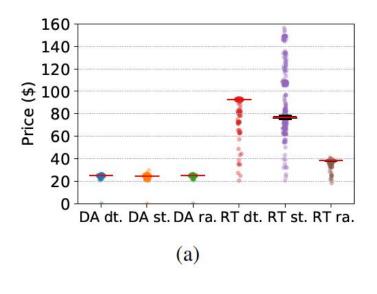
## **Price Volatility**

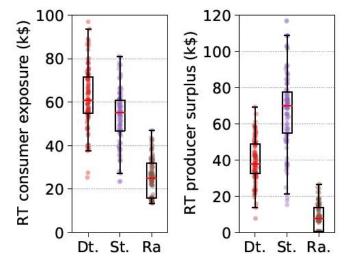
TABLE I: Comparison of Risk-Aware and Deterministic SCUC Problems for  $\rho=1$ 

| $R^d$ | $R^w$ | Save   | Deter.     | Cost     | DA cost   | Consr.     |
|-------|-------|--------|------------|----------|-----------|------------|
|       |       | (k\$)  | cost (M\$) | red. (%) | diff (\$) | exp. (k\$) |
| 0.1   | 0.2   | 0.00   | 5.37       | 0.00     | 0.00      | 8.53       |
| 0.1   | 0.4   | 0.12   | 5.37       | 0.00     | 116.16    | 8.53       |
| 0.1   | 0.6   | 0.00   | 5.37       | 0.00     | 0.00      | 8.89       |
| 0.1   | 0.8   | 42.29  | 5.41       | 0.78     | 116.16    | 8.89       |
| 0.1   | 1.0   | 42.28  | 5.41       | 0.78     | 123.50    | 8.89       |
| 0.2   | 0.2   | 114.71 | 5.50       | 2.09     | 116.16    | 17.78      |
| *0.2  | 0.4   | 114.14 | 5.50       | 2.08     | 688.03    | 17.78      |
| 0.2   | 0.6   | 115.74 | 5.50       | 2.11     | 1446.22   | 16.76      |
| 0.2   | 0.8   | 108.58 | 5.50       | 1.98     | 8130.20   | 17.78      |
| *0.2  | 1.0   | 115.64 | 5.50       | 2.10     | 1072.06   | 17.78      |

\* Instance solved with 3 root cuts.

- Consumer risk exposure is reduced at no expense to the system efficiency.
- Risk management is not orthogonal to efficiency.
- Dramatic reduction in consumer exposure





# **Concluding Thoughts**

- Risk management scales to realistically large networks
- Extreme outcomes and volatility are considered endogenously and without computationally intensive sampling
- We provide a robust pricing framework that captures option-value of resiliency
- This framework can be adapted to other applications

# Thank you! Questions? Suggestions? Feedback?

- We are constantly looking for Ph.D. applicants
- Reach out to us at <a href="mailto:ydvorki1@jhu.edu">ydvorki1@jhu.edu</a>

## • Collaborators:





Tomas Tapia



Zhirui Liang



Daniel Bienstock



Cheng Guo