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Residential Demand Response
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Why Study Residential Demand Response?

Because residential demand takes the largest share;
Huge potential but underutilized.
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&Goal: Select Right Users to Signal

Due to budget constraints, need to select a subset of users (e.g., 1k) from the user pool (e.g., 10k)
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Multi-Armed Bandits (MAB) Framework

*» Key Features: 1) Arms are different but independent; 2) Uncertain and unknown behaviors

Bandit Slot Machine Demand Response

"] " AL AL
N ‘ b y N p N y
b Y n Ny u Ny n L. n
b b b b
ha ha b b

=  Select one arm to maximize the profits; =  Select a subset of users for DR;

=  (QObserve the reward of the selected arm; = QObserve responses from selected users;

= |mprove play strategies from feedback. = Learn users’ behaviors from responses.
Application

EV charging management - -
Examples tﬁ‘ ging g u% Residential load control



Consider a time horizon [T] = {1,2,--- T}

Problem Formulation Each time t € [T'] denotes a DR event.
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Solution: Contextual Multi-Armed Bandits

\/

s Logistic regression to predict Pi,t for each user i at time t under contextual influence:
1

1 + exp (—9;3%',15)

(Unknown) Individual Preference ~— T Contextual Factors

1
o= (0.0, ) o= (12l )
(electricity price, credit, weather, temperature, ...)

pit=g(0, zis) =

/

*%* Online Learning and Human-In-the-Loop Decision:

Learning

user opt-out :
& decision

[r— »

outcomes

Thompson Sampling
to learn unknown 6; with
balance of exploitation

v and exploration

i) i) @ @
J A ey foa) i)
l unknown and uncertain user behaviors .

contextual factors




Online Algorithm Based on Thompson Sampling.

= Assume unknown @, be a random variable with Gaussian prior Pgi

= |n each demand response event t,

Step 1: Sample 9/\Z from its distribution [Pg .

Step 2: Select users by solving

max E( E CitZit)

LES;

S.L. Z Tt < by

1ES,

Z Ci,tPit

LES

=

— N([L,;, 22) )
1
Pit — -
1 4+ exp (—9;_:13@',75)
N
Ob;y. max Ci tDi t O,
] o e lo.1) tDi e O ¢

1=1

N
Binar
S.L. Z T'i,tcxi,t E bf: ) ; y

Optimization

Step 3: Update posterior Py, <— Py, (-|T; ¢, 2;.+) with the observation &; ¢, 2; ¢ .

variational Bayesian inference approach [3]




Regret Analysis

T
m T-time Regret: Regret(T,0) = ZE fo(S,t) — fo(St,t) | 0]

=7 N

Optimal objective with true 0. Objective using the proposed algorithm.

m T-time Bayesian Regret: BayesRegret(T) = Eg~ p, [Regret(T, )]

Theorem (informal): When T is sufficiently large, the Bayesian regret is

where v = exp(2 sup ||6i||~) and d is the dimension of 8;.  Sublinear
i€[N]

BayesRegret(7T') < O (szyd\/T log T'(d + log T)) ~ O(log(T)VT) i

X. Chen, Y. Nie, and N. Li, “Online residential demand response via contextual multi-armed bandits,” IEEE Control Systems Letters, 2020.



Recent Extension: Contextual Restless Bandits

* temperature, weather, price, time ...

Global contextual influence |:> Contextual MAB )

{} (consider contextual factors)

‘
Arm User / Load - ;
dh + C

Internal states and dynamics [—> Restless MAB 7

* Physical dynamics: e.g., AC thermal (model each arm dynamics via MDP)

dynamics, EV charging SOC dynamics
e User “fatigue effect” . ..



Recent Extension: Contextual Restless Bandits

* temperature, weather, price, time ...

Global contextual influence |:> Contextual MAB )
{} (consider contextual factors) Our Novel Framework

. Contextual Restless

|
Arm ah User / Load + MAB (CRB)

ﬁ

Internal states and dynamics [—> Restless MAB 7

* Physical dynamics: e.g., AC thermal (model each arm dynamics via MDP)

dynamics, EV charging SOC dynamics
* User “fatigue effect”. .. * X.Chen,l. Hou, “Contextual Restless Multi-Armed Bandits with
Application to Demand Response Decision-Making”, IEEE CDC, 2024.
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CRB Problem Formulation

Consider N arms and an infinite time horizont =0, 1, 2, ---

At each time t, observe the states - .
51, of all arms and global context g, ® arm 1 Each arm i : Context-augmented MDP
selects at most ;. arms & » Action: a;; € A:={0,1}
: = State: s;: €S
D?nci';n' [ J — = Transition (context-dependent):
P;(s'|g,s,a) =
. 2 . p— / — x = 5 = p—
find optimal selection policy . P(sit+1 = 5'lgt = g, 854 = 5,00t = a)
m(als, g) ® » Reward (context-dependent):
oo N gl aim N rit=— Ri(ﬂa‘.f St ”«:‘.r)
(Primal) : max E; l Z Z .3';",-_,] _

=0 i=1

N = Global context: g: € G
s.t. Z a;it <Cy, VieT follows positive-recurrent Markov Process
=1

G(d'|9) = P(gi+1=9"|gt =9)
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Solution Algorithm: Dual Decomposition

Very high-dimension MDP

(Primal) : max E, [i i 87|

t=0 =1

expected per-global-context budget constraint

N
S.t. Zai’t <Cy, VteT
72=1

o~

Relax budget
constraint

T~
Challenge 0

Dual Decomposition Solution

= Gradient descent update of A

(Arm;(X)) : max E,, [Z B (riy — Mg, as
‘ t=0

= Each armisolves alocal problem :
)

(Relaxed) : max E. [i i Btn,t}

t=0 i=1
s.t ]Eﬁ[iﬁt]l(gt — g)(ia”)]
t=0 1=1
<E, [iﬁtﬂ(gf g)} Cy, Vgeg
t=0

Lagrange multiplier| A:=(A\g)geg

A4

N

,t

(Dual) : min [max L(m, )\)}

A>0 T

L(m,A) = ZN:ETF [i .Bt(?‘z',t_)\gga’i:t)} +Ex [i-ﬁt)‘gacgt} '
t=0
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Solution Algorithm: Dual Decomposition

= Gradient descent update of A

00 N n
)\(gkﬂ) — [Aék) + 5kEw*(A(k3) [Zﬁtﬂ(gt = 9)(2%‘,:& - Cg)ﬂ

t=0

=1 ..
(A) AR = (Af)geg
= Each arm i solves a local unconstrained problem

(Arm;(A)) : max B, lz B (rit — Mg, a4, t)] the policy for armi: p;(alg, s, A)

Solve Bellman Interpretation of A: global “price” paid to select an arm
Optimality Equation

v" Optimal Q-function: Q;",\(gjsja) = Ri(g,s,a) — A\ga +5 Z G(g'lg)Pi(s'|g,s,a)Vi"\ (9", s").

g'eG,s’'eS

L, if Q:)\(gf'si.tfl) > Q;A(gt-si.bo)

Optimal local policy: pr(A):a; =
‘ ' 0. otherwise.
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Index Policy with Known Models

Real-time application:
1.

Compute index of
each arm

Rank arms by index
values

. Selecttop (4, arms

Algorithm 1 Index Policy Algorithm for Solving the CRB

Problem with Known Arm Models.

(0)

. Initialization: A\(*):=(\;"),cq + 0; k < 0; € > 0.

|
2: repeat
3

Perform the following three steps for each arm i € [N]

in parallel:
1) Solve LP;(A™)) (9) to obtain V,

LS

Atm(ﬂ-s);

2) Compute the Q-function Q7 , (g, s,a) by (10);
3) Construct the optimal policy p:(A*)) by (11).
4:  Let 7*(AM)) = {pf(k“"’))},—e[ﬁ-]. and perform the
update (7) to obtain A*T1) where the expectation
is computed using (12)-(14). Let k + & + 1.

. until the convergence ||[A*) — XF=V[| < ¢ is met.

5

6: Let A* «— AF),

7- fortime t = 0.1.2.... do
8

A
LY

Compute the index of each arm i € [N]:

Index of eacharm «—— i < Q] 5-(9t.8it,1) — Q7 5-(gt. 5i4.0).

(15)

9:  Sort all arms such that [}y, > T2y = - = I(n)+-

10:  Activate the top C;, arms (1),(2),---

11: end for

(Cy, ).

Solve Relaxed Problem
to obtain A* via dual
decomposition

Implement Index Policy
(ensure budget constraint)

18



Online Learning with Unknown Models

Algorithm 2 Online Learning Algorithm for Solving the
CRB Problem with Unknown Arm Models.

1: Initialization: Time window T17; ¢,, > 0; initial transition

kernel PY(-) of each arm i € [N].

2: for epoch n =10,1,2,... do

3:

Based on the up-to-date transition kernel model P (-)
of each arm i € [IV], follow Steps [2Jj6]in Algorithm [1]
to compute the optimal A}.
for time t =nT , nT+1,--- ., nT+T—1 do
With probability of 1 — ¢,
- Compute the index I, ; of each arm ¢ € [N|;
- Sort all arms such that I(1y, > I9); > -+ =
I(ny,+ and activate the top C'y, arms.

With probability of ¢, randomly activate C'y, arms.
end for
For each arm i € [N], based on the observed state
transitions, update its transition kernel model by:
Mi

!
S 393510

M: ’

gﬂs’a

P;H_l (Si,t+1 = 5f|9t =4,8{t=S5,Qt= a) =

i 'I -9 . .
where Mg ; , and M, ., are arm¢’s cumulative his-

torical counts of the context-state-action tuple (g, s, a)
and the state transition (g, s,a) — s'.

8: end for

Solve Relaxed Problem

Implement Index Policy
with e-exploration

Better online learning algorithms:
Thompson Sampling, UCB, Q-learning

Update estimation of
transition kernel models

Function approximation for Scalability

19



Theoretical Analysis: Asymptotical Optimality

Optimal Objective Values:  Viv, > Vav. > V&,

Index policy

Relaxed feasible but maybe sub-optimal)

problem

Primary problem

Theorem 1. Suppose that the initial global context gg is
chosen uniformly at random from G and the initial state

sio of each arm © € [N]| is chosen independently with
the distribution P(s; 0 = s|go = g) = my(s), then, under

Assumption 1, we have V. Rf\g | / N —» VPJ\rIi /N
Vil > VY > Vil — O(V'N). (20)

as N — oo

X. Chen, I. Hou, “Contextual Restless Multi-Armed Bandits with Application to Demand Response Decision-Making®, IEEE CDC, 2024. 20



Numerical Simulations

Residential Demand Response:

Number of users (arms) N = 500 . N
Fig 1. Convergence of Dual Decomposition Alg.

Discrete global context

6 —
g (= g:{1:2’...’6} E
Sy
Selection budget C =100 E
S 2
State: s;; 1= (Zi,t:i??z',t) g
- - Sol
ziy € {1,2,--,4)
_ N 0 50 100 150 200
Reward: R;(:) = C=mEES! Number of Iterations

Discount factor 5 = (.97

finite time horizon 7' = 300
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Numerical Simulations N
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Online learning for human-in-the-loop DR decision

—— learning <—— observation «——

Key Takeaway

Aggregator User

A

—— decision — action

*** The multi-armed bandits (MAB) method is useful for large-scale DR online decision-making.

** A novel MAB framework, Contextual Restless Bandits (CRB), models both the dynamic state
transitions of each arm and the influence of external global environmental context.

¢ A scalable index policy algorithm based on dual decomposition is proposed to solve CRB.

+* Simulation results demonstrate the asymptotic optimality and enhanced modeling capability.
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