

Swissgrid voltage support challenges

- Power plants with exhausted resources hydro storage power plants with empty reservoirs
- Swissgrid's increasing needs transmission grid expansion
- Energy transition and decentralization decentralized feed-in of electricity
- Voltage control at a European level minimize the exchange of reactive energy with other countries to make the lines available for active power

Opportunity

Distributed Energy Resources form a fine-grained network of reactive power compensators.

No easy way

Procuring voltage-support services from independent entities (**distribution grid operators**) is **hard**. In this talk:

- a brief review of today's scheme and what does NOT work
- a better scheme based on a game-theoretic formulation of the problem
- the "right way": codesign of automation and incentives

Outline

1. Today's procurement of voltage-support services

2. Procurement of voltage support as a bilevel game

3. Co-design of feedback control and incentive

Voltage support procurement pipeline

Tech. docs: swissgrid.ch

Together with (but preferred to):

- decommissioned nuclear power plants as synchronous condenser
- tap changers
- own compensators

- DSOs as tracking controllers
 - receive a reference signal v_{ref}
 - measure local voltage v_{meas}
 - aim at tracking by controlling their reactive power demands q
- Financial incentives have been designed ex-post

OPFV

Relatively standard AC OPF problem.

$$\begin{array}{ll} v_{\rm ref} = & \arg\min_{v,q} & {\sf norm}(q) + {\sf losses}(q,v) + \dots \\ & {\sf subject\ to} & q = h(v,d) & {\sf AC\ power\ flow\ equations} \\ & v_{\sf min} \leq v \leq v_{\sf max} \\ & q_{\sf min} \leq q \leq q_{\sf max} \end{array}$$

- **Grid model** *h* known to the operator
- Power flow forecasts d known to the operator
- Optimal 4-hourly voltage profile for 24 hours

Incentives and empirical data

Swissgrid reactive power incentive

- proportional to |q|
- positive payment (reward) if "conform"
- negative payment (penalty) if "non-conform"

$$\mathcal{P}(q_i, v_i, u) \approx uq_i \operatorname{sign}(v_i - v_{\mathsf{ref},i})$$

The DSO "best response" problem

Reward curves

unilateral deviation

$$q_{\mathsf{opt},i} = \arg\min_{\xi_i} \quad c_i(\xi_i) - \mathcal{P}(\xi_i, v_i(\xi_i, q_{-i}, d), u)$$

 $\mathrm{subject\ to} \quad q_{\mathsf{min},i} \leq \xi_i \leq q_{\mathsf{max},i}$
 $v_{\mathsf{min},i} \leq v_i(\xi_i, q_{-i}, d) \leq v_{\mathsf{max},i}$

optimal reactive power demand of DSO i

voltage at substation i

reactive power demand of other DSOs

d unknown state of the grid

u incentive parameters of payment \mathcal{P}

c cost of reactive power

Online Feedback Optimization

$$\begin{split} q_{\mathsf{opt},i} &= \arg\min_{\xi_i} \quad c_i(\xi_i) - \mathcal{P}(\xi_i, v_i(\xi_i, q_{-i}, d), u) \\ &\text{subject to} \quad q_{\mathsf{min},i} \leq \xi_i \leq q_{\mathsf{max},i} \\ &v_{\mathsf{min},i} \leq v_i(\xi_i, q_{-i}, d) \leq v_{\mathsf{max},i} \end{split}$$

Cannot be solved numerically by the DSO

- unknown d
- unknown q_{-i}
- poor grid model

Online feedback optimization

Design a feedback controller so that

- the best response (arg min) is asymptotically stable (tracked)
- d is "rejected"
- minimal (local) model information is used

Theory of OFO

How to make $\arg\min_{\xi_i} c_i(\xi_i) - \mathcal{P}(\xi_i, v_i(\xi_i, q_{-i}, d), u)$ asymptotically stable?

Interconnection of optimization iteration (e.g., projected gradient flow) with the real plant

$$\dot{q}_i = \Pi_{\text{feas}} - \nabla c_i + \nabla_{q_i} \mathcal{P}(q_i, v_i, u) + \underbrace{\nabla_{q_i} v_i(q_i, q_{-i}, d)}_{\text{local power flow sensitivities}} \nabla_{v_i} \mathcal{P}(q_i, v_i, u)$$

→ convergence and tracking, robustness to model mismatch, implementation via iterated QP.

OFO in the wild

Controller design

A. Hauswirth, Z. He, S. Bolognani, G. Hug, and F. Dörfler. **Optimization algorithms as robust feedback controllers.**Annual Reviews in Control, 57(100941), 2024. – video – slides

Also: Bernstein, Dall'Anese, Simonetto, Cavraro, and others

Deployment

L. Ortmann, C. Rubin, A. Scozzafava, J. Lehmann, S. Bolognani, F. Dörfler. **Deployment of an Online Feedback Optimization Controller for Reactive Power Flow Optimization in a Distribution Grid.**In Proc. IEEE PES ISGT Europe. 2023

How about q_{-i} ? Feedback Equilibrium Seeking

G. Belgioioso, S. Bolognani, G. Pejrani, F. Dörfler.

Tutorial on Congestion Control in Multi-Area Transmission Grids via Online Feedback Equilibrium Seeking.

62nd IEEE Conference on Decision and Control, 2023

Poor voltage reference tracking

- High reactive power cost?
- Limited reactive power resources?
- Multiple equilibria?
- Collusion?

Outline

1. Today's procurement of voltage-support services

2. Procurement of voltage support as a bilevel game

3. Co-design of feedback control and incentive

ETH zürich

Incentive design

Incentives should not be designed ex post, but used as a real-time control signal.

Stackelberg game / bilevel optimization

$$\min_{v,q,u} F(v(q,d)) \quad \text{e.g., } \|v-v_{\mathsf{ref}}\|^2$$
 subject to
$$\forall i: \quad q_i = \arg\min_{\xi_i} \quad c_i(\xi_i) - \mathcal{P}(\xi_i,v_i(q,d),u_i)$$
 subject to
$$q_{\mathsf{min},i} \leq \xi_i \leq q_{\mathsf{max},i}$$
 DSOs' best response

For example: locational reactive power prices

Simple linear incentive

$$\mathcal{P}(q_i, v_i, u_i) = u_i q_i$$

decoupled DSOs' best responses

Incentive update via Online Feedback Optimization

$$\dot{u} = \nabla_u q_{\text{opt}}(v,d,u)^\top \cdot \nabla_q v(q,d)^\top \cdot \nabla_v F(v)$$
 best-response sensitivities power flow sensitivities cost gradient

Closed loop leader-follower system

Numerical example

However...

Simple linear incentive

$$\mathcal{P}(q_i, v_i, u_i) = u_i q_i$$

- + Locational incentives
- + Simple best response by the DSOs
- + Efficient procurement (incentive = marginal cost)
- Centralized feedback through the incentive update
- Sensitive to best-response sensitivities (often large)
- Requires real-time incentive update

Outline

1. Today's procurement of voltage-support services

2. Procurement of voltage support as a bilevel game

3. Co-design of feedback control and incentive

ETH zürich

Voltage-dependent incentives

Richer incentive class

$$\mathcal{P}(q_i, v_i, u_i)$$

For example

$$\mathcal{P}(q_i, v_i, u_i) = u_i q_i (v_i - v_{\mathsf{ref}, i})$$

$$\begin{aligned} & \min_{v,q,u} & F(v) \\ & \text{subject to} & \forall i: & q_i = \arg\min_{\xi_i} & c_i(\xi_i) - \mathcal{P}(q_i,v_i(q_i,q_{-i}),u_i) \\ & & \text{subject to} & q_{\mathsf{min},i} \leq \xi_i \leq q_{\mathsf{max},i} \end{aligned}$$

coupled DSO best responses: game!

Incentive update via Online Feedback Optimization

$$\dot{u} = \nabla_u q_{\text{opt}}(v, d, u)^\top \cdot \nabla_q v(q, d)^\top \cdot \nabla_v F(v)$$

JOINT best-response sensitivities power flow sensitivities cost gradient

Closed loop leader-MULTI-follower system

Multi-timescale protocol

Outlook

We need to procure complex grid services from DSOs

No easy way: simplistic solutions are not enough!

Real timely problem. Switzerland as benchmark (data!). DSO response to incentives has been tested in the field. Running project: https://bsaver.io/MAESTRO

Online-optimization and Game-theoretic tools

- Stackelberg multi-follower problem
- Best-response and incentive updates via Online Feedback Optimization
- Co-design of control and incentives via Big-Hype

Slides: https://bsaver.io/NREL2024

Saverio Bolognani bsaverio@ethz.ch https://www.bsaver.io