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Optimization

x⋆
d = argminx∈C f(x; d)

✓ data driven ✓ scalable algorithms

✓ fexible architectures ✓guaranteed feasibility/optimality

✓ expressive capacity ✓ interpretable models

satisfy constraints / optimality leverage data

Today:

Design and efciently train network architectures that beneft from optimization theory. =⇒

NN outputs satisfy optimality/feasibility conditions.1

� �

Motivation: ML vs. Optimization Models 

Deep Learning 

⋆ x = σ(W m · +bm) ◦ · · · ◦ σ(W 1d + b1)d 

1Heaton and Wu Fung (2023). “Explainable AI via Learning to Optimize.” Scientifc Reports 
Implicit L2O 2 
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Learning to Optimize 

Learning to Optimize 
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⇐⇒ xΘ,d = TΘ(xΘ,d; d)

Example: projected gradient descent: TΘ(xk; d) = PC(xk − α∇xfΘ(xk; d))

Forward propagation consists of applying an iterative (or fxed point) algorithm repeatedly

xk+1 = TΘ(xk; d), k = 1, . . . , K (2)

Fixed number of iterations, e.g., K = 10 =⇒ unrolled network

Iterate until convergence (K ≫ 1) =⇒ Implicit Networks2 3 (outputs satisfy

optimality/feasibility guarantees!)

L2O Description and Forward Propagation 

Make a model by parameterizing an optimization problem via Θ to get 

xΘ,d = arg min fΘ(x; d) (1) 
x∈C 

Note: Constraints/analytic cost functions can be included by domain experts. 

2El Ghaoui, Laurent, et al. (2021) "Implicit deep learning." SIMODS 
3Bai et al (2019) "Deep Equilibrium Models" NeurIPS ’19 
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Assumption 1: Contractiveness of TΘ 

Banach Fixed Point Theorem
For any x1 ∈ U , if Assumption 1 holds, then the sequence {xk} generated by

xk+1 = TΘ(xk; d), for all k ∈ N, (3)

converges linearly to the unique fxed point x⋆
d.

Remark: If TΘ is a contraction in x, we have well-defned implicit network

Well-Defned Implicit Network 

For fxed d, there exists γ ∈ [0, 1) such that 

∥TΘ(x1; d) − TΘ(x2; d)∥ ≤ γ∥x1 − x2∥, for all x1, x2 ∈ U . 

Implicit L2O 5 
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Training Implicit Networks 

Training Implicit Networks 
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where

xΘ,di = argminx∈C fΘ(x; di)

or equivalently: xΘ,di = TΘ(xΘ,di ; di)

dℓ

dΘ = dℓ

dxΘ

dxΘ
dΘ . How to compute dxΘ

dΘ ?
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Implicit L2O: The Learning Problem 

⋆Given data {(di, x )} the training problem is given by di 

⋆min ℓ xΘ,di , x (4)di
Θ 

i 
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Backpropagation 

Backpropagating Through Implicit Networks 
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If network converges in K iterations, we need to apply the chain rule K times:
dxΘ(d)

dΘ = dxK
Θ

dΘ = dxK
Θ

dxK−1
Θ

dxK−1
Θ

dΘ + ∂xK

∂Θ

dxK−1
Θ

dΘ = dxK−1
Θ

dxK−2
Θ

dxK−2
Θ

dΘ + ∂xK−1
Θ

∂Θ
...

dx2Θ
dΘ = dx2Θ

dx1Θ

dx1Θ
dΘ + ∂x2Θ

∂Θ

memory requirements grow linearly in depth (O(K)) =⇒ intractable for implicit networks

Standard Backpropagation 

To train the implicit L2O network, we need to compute the gradient of the loss function 

d dℓ dxΘ,d[ℓ(xΘ,d, xd)] = . 
dΘ dx dΘ 
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Θ Θ Θ Θ 
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Computation of its gradient can be done using the Implicit Function Theorem:

dxΘ
dΘ = dTΘ

dx

dxΘ
dΘ + ∂TΘ

∂Θ

=⇒ dxΘ
dΘ = J−1Θ

∂TΘ
∂Θ , where JΘ ≜ I − dTΘ

dx
.

Memory required to compute dxΘ,d

dΘ is constant in depth! ✓

Unfortunately, solving for J−1Θ ∂T
∂Θ is often very expensive �

Implicit Jacobian-based Backpropagation 

Recalling the output of an implicit network is the fxed point of TΘ: 

xΘ,d = TΘ(xΘ,d; d), 
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Jacobian-free Backprop (JFB) 

Jacobian-free Backpropagation (JFB) 
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Key Idea: replace JΘ with identity4.

That is, approximate true gradient

d

dΘ[ℓ(xΘ,d, xd)] =
dℓ

dxΘ,d
J−1Θ

∂T

∂Θ

with

pΘ =
dℓ

dxΘ,d

∂T

∂Θ
Remark: cost equivalent to computing the gradient of one layer!

Proposed: Jacobian-free Backprop (JFB) 

Goal: Avoid solving Jacobian-based equation and memory issues when training implicit networks. 

4Wu Fung et al. (2022) “JFB: Jacobian-Free Backpropagation for Implicit Networks.” AAAI 22 
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Main Theorem: Descent of JFB
If Assumptions 1 and 2 hold for given Θ and d, then

−pΘ = −
dℓ

dxΘ,d

∂T

∂Θ

forms a descent direction for ℓ(xΘ,d, xd) with respect to Θ.

Jacobian-free Backprop (JFB) 

Assumption 1 
TΘ is continuously dif’ble w.r.t Θ 

Assumption 2 

M = ∂T 
∂Θ has full column rank and is well-conditioned s.t. κ(M⊤M) ≤ 1 

γ 
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If Assumptions 1 and 2 hold for given Θ and d, then 

dℓ ∂T −pΘ = − 
dxΘ,d ∂Θ 

forms a descent direction for ℓ(xΘ,d, xd) with respect to Θ. 
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Implementation of JFB 

Figure 1: Sample PyTorch code for backpropagation 

Remark: backpropagation is simple in PyTorch framework! 

Implicit L2O 14 



Jacobian-Free Backprop (JFB) 

JFB works! 
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Figure 2: Training an implicit neural network on CIFAR10. JFB is faster and yields higher test 

accuracy than Jacobian-based backprop. 
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L2O Experiment: Computed Tomography 

Comparison of techniques, ranging from traditional to fully data-driven 

(L2O Model) = NΘ(d) = arg min fΘ(Kx) s.t. Ax = b (5) 
x∈[0,1]n 
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Problem Formulation:

xΘ(d) ≜ argmin
x∈C

wΘ(d)⊤x (6)

where C = {x : Ax = b

C1

, x ≥ 0
C2

} encodes origin-destination constraints and fow conservation

constraints.

Problem: projection onto C nontrivial =⇒ fwd prop. and backprop. expensive, even with JFB.

Remedy: Defne implicit network using three-operator splitting:

T (x; d) = x− PC1(x) + PC2 (2PC1(x)− x−∇fΘ(PC1(x); d))) , (7)

where note that PC1 and PC2 are trivial to compute.

� �� � � �� �

L2O Experiment: Shortest Path Problem 

Shortest Path Problem: given a graph and origin/destination nodes, fnd the path that incurs 

minimal cost. 
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L2O Experiment: Shortest Path Problem 

Test Loss Training Time (mins) 
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Implicit L2O models can be efciently trained using Jacobian-Free Backpropagation

Implicit L2O + JFB have found success in trafc fow, computed tomography, and knapsack

problem

More details can be found in papers:

Explainable AI via Learning to Optimize, Scientifc Reports, 2023

JFB: Jacobian-Free Backpropagation for Implicit Networks, AAAI, 2022

Three Operator Splitting for Learning to Predict Equilibria in Convex Games, SIMODS,

2024

Learning to Solve Integer Linear Programs with Davis-Yin Splitting, TMLR, 2024

Summary 

Implicit L2O: optimization-based network architectures with guarantees on their outputs 
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