
Learning to Optimize via Implicit Networks 

Samy Wu Fung1 

Joint work with Howard Heaton2, Daniel McKenzie1, Qiuwei Li3 Wotao Yin3, Stanley Osher4 

Colorado School of Mines1, Typal Academy2, Alibaba Group3, UCLA4 



Optimization

x⋆
d = argminx∈C f(x; d)

✓ data driven ✓ scalable algorithms

✓ fexible architectures ✓guaranteed feasibility/optimality

✓ expressive capacity ✓ interpretable models

satisfy constraints / optimality leverage data

Today:

Design and efciently train network architectures that beneft from optimization theory. =⇒

NN outputs satisfy optimality/feasibility conditions.1

� �

Motivation: ML vs. Optimization Models 

Deep Learning 

⋆ x = σ(W m · +bm) ◦ · · · ◦ σ(W 1d + b1)d 

1Heaton and Wu Fung (2023). “Explainable AI via Learning to Optimize.” Scientifc Reports 
Implicit L2O 2 



Optimization

x⋆
d = argminx∈C f(x; d)

✓ scalable algorithms

✓guaranteed feasibility/optimality

✓ interpretable models

leverage data

Today:

Design and efciently train network architectures that beneft from optimization theory. =⇒

NN outputs satisfy optimality/feasibility conditions.1

�

�

Motivation: ML vs. Optimization Models 

Deep Learning 

⋆ x = σ(W m · +bm) ◦ · · · ◦ σ(W 1d + b1)d 

✓ data driven 

✓ fexible architectures 

✓ expressive capacity 

satisfy constraints / optimality 

1Heaton and Wu Fung (2023). “Explainable AI via Learning to Optimize.” Scientifc Reports 
Implicit L2O 2 



✓ scalable algorithms

✓guaranteed feasibility/optimality

✓ interpretable models

leverage data

Today:

Design and efciently train network architectures that beneft from optimization theory. =⇒

NN outputs satisfy optimality/feasibility conditions.1

�

�

Motivation: ML vs. Optimization Models 

Deep Learning Optimization 

⋆ x = σ(W m · +bm) ◦ · · · ◦ σ(W 1d + b1)d 
⋆ x = arg mind x∈C f(x; d) 

✓ data driven 

✓ fexible architectures 

✓ expressive capacity 

satisfy constraints / optimality 

1Heaton and Wu Fung (2023). “Explainable AI via Learning to Optimize.” Scientifc Reports 
Implicit L2O 2 



Today:

Design and efciently train network architectures that beneft from optimization theory. =⇒

NN outputs satisfy optimality/feasibility conditions.1

� �

Motivation: ML vs. Optimization Models 

Deep Learning Optimization 

⋆ x = σ(W m · +bm) ◦ · · · ◦ σ(W 1d + b1)d 
⋆ x = arg mind x∈C f(x; d) 

✓ data driven ✓ scalable algorithms 

✓ fexible architectures ✓guaranteed feasibility/optimality 

✓ expressive capacity ✓ interpretable models 

satisfy constraints / optimality leverage data 

1Heaton and Wu Fung (2023). “Explainable AI via Learning to Optimize.” Scientifc Reports 
Implicit L2O 2 



� �

Motivation: ML vs. Optimization Models 

Deep Learning Optimization 

⋆ ⋆ x = σ(W m · +bm) ◦ · · · ◦ σ(W 1d + b1) x = arg minx∈C f(x; d)d d 

✓ data driven ✓ scalable algorithms 

✓ fexible architectures ✓guaranteed feasibility/optimality 

✓ expressive capacity ✓ interpretable models 

satisfy constraints / optimality leverage data 

Today: 

Design and efciently train network architectures that beneft from optimization theory. =⇒ 

NN outputs satisfy optimality/feasibility conditions.1 

1Heaton and Wu Fung (2023). “Explainable AI via Learning to Optimize.” Scientifc Reports 
Implicit L2O 2 



Learning to Optimize 

Learning to Optimize 

Implicit L2O 3 



⇐⇒ xΘ,d = TΘ(xΘ,d; d)

Example: projected gradient descent: TΘ(xk; d) = PC(xk − α∇xfΘ(xk; d))

Forward propagation consists of applying an iterative (or fxed point) algorithm repeatedly

xk+1 = TΘ(xk; d), k = 1, . . . , K (2)

Fixed number of iterations, e.g., K = 10 =⇒ unrolled network

Iterate until convergence (K ≫ 1) =⇒ Implicit Networks2 3 (outputs satisfy

optimality/feasibility guarantees!)

L2O Description and Forward Propagation 

Make a model by parameterizing an optimization problem via Θ to get 

xΘ,d = arg min fΘ(x; d) (1) 
x∈C 

Note: Constraints/analytic cost functions can be included by domain experts. 

2El Ghaoui, Laurent, et al. (2021) "Implicit deep learning." SIMODS 
3Bai et al (2019) "Deep Equilibrium Models" NeurIPS ’19 

Implicit L2O 4 



Example: projected gradient descent: TΘ(xk; d) = PC(xk − α∇xfΘ(xk; d))

Forward propagation consists of applying an iterative (or fxed point) algorithm repeatedly

xk+1 = TΘ(xk; d), k = 1, . . . , K (2)

Fixed number of iterations, e.g., K = 10 =⇒ unrolled network

Iterate until convergence (K ≫ 1) =⇒ Implicit Networks2 3 (outputs satisfy

optimality/feasibility guarantees!)

L2O Description and Forward Propagation 

Make a model by parameterizing an optimization problem via Θ to get 

xΘ,d = arg min fΘ(x; d) ⇐⇒ xΘ,d = TΘ(xΘ,d; d) (1) 
x∈C 

Note: Constraints/analytic cost functions can be included by domain experts. 

2El Ghaoui, Laurent, et al. (2021) "Implicit deep learning." SIMODS 
3Bai et al (2019) "Deep Equilibrium Models" NeurIPS ’19 

Implicit L2O 4 



Example: projected gradient descent: TΘ(xk; d) = PC(xk − α∇xfΘ(xk; d))

Forward propagation consists of applying an iterative (or fxed point) algorithm repeatedly

xk+1 = TΘ(xk; d), k = 1, . . . , K (2)

Fixed number of iterations, e.g., K = 10 =⇒ unrolled network

Iterate until convergence (K ≫ 1) =⇒ Implicit Networks2 3 (outputs satisfy

optimality/feasibility guarantees!)

L2O Description and Forward Propagation 

Make a model by parameterizing an optimization problem via Θ to get 

xΘ,d = arg min fΘ(x; d) ⇐⇒ xΘ,d = TΘ(xΘ,d; d) (1) 
x∈C 

Note: Constraints/analytic cost functions can be included by domain experts. 

2El Ghaoui, Laurent, et al. (2021) "Implicit deep learning." SIMODS 
3Bai et al (2019) "Deep Equilibrium Models" NeurIPS ’19 

Implicit L2O 4 



Forward propagation consists of applying an iterative (or fxed point) algorithm repeatedly

xk+1 = TΘ(xk; d), k = 1, . . . , K (2)

Fixed number of iterations, e.g., K = 10 =⇒ unrolled network

Iterate until convergence (K ≫ 1) =⇒ Implicit Networks2 3 (outputs satisfy

optimality/feasibility guarantees!)

L2O Description and Forward Propagation 

Make a model by parameterizing an optimization problem via Θ to get 

xΘ,d = arg min fΘ(x; d) ⇐⇒ xΘ,d = TΘ(xΘ,d; d) (1) 
x∈C 

Note: Constraints/analytic cost functions can be included by domain experts. 

Example: projected gradient descent: TΘ(xk; d) = PC (xk − α∇xfΘ(xk; d)) 

2El Ghaoui, Laurent, et al. (2021) "Implicit deep learning." SIMODS 
3Bai et al (2019) "Deep Equilibrium Models" NeurIPS ’19 

Implicit L2O 4 



Fixed number of iterations, e.g., K = 10 =⇒ unrolled network

Iterate until convergence (K ≫ 1) =⇒ Implicit Networks2 3 (outputs satisfy

optimality/feasibility guarantees!)

L2O Description and Forward Propagation 

Make a model by parameterizing an optimization problem via Θ to get 

xΘ,d = arg min fΘ(x; d) ⇐⇒ xΘ,d = TΘ(xΘ,d; d) (1) 
x∈C 

Note: Constraints/analytic cost functions can be included by domain experts. 

Example: projected gradient descent: TΘ(xk; d) = PC (xk − α∇xfΘ(xk; d)) 

Forward propagation consists of applying an iterative (or fxed point) algorithm repeatedly 

x k+1 = TΘ(x k; d), k = 1, . . . , K (2) 

2El Ghaoui, Laurent, et al. (2021) "Implicit deep learning." SIMODS 
3Bai et al (2019) "Deep Equilibrium Models" NeurIPS ’19 

Implicit L2O 4 



Iterate until convergence (K ≫ 1) =⇒ Implicit Networks2 3 (outputs satisfy

optimality/feasibility guarantees!)

L2O Description and Forward Propagation 

Make a model by parameterizing an optimization problem via Θ to get 

xΘ,d = arg min fΘ(x; d) ⇐⇒ xΘ,d = TΘ(xΘ,d; d) (1) 
x∈C 

Note: Constraints/analytic cost functions can be included by domain experts. 

Example: projected gradient descent: TΘ(xk; d) = PC (xk − α∇xfΘ(xk; d)) 

Forward propagation consists of applying an iterative (or fxed point) algorithm repeatedly 

x k+1 = TΘ(x k; d), k = 1, . . . , K (2) 

Fixed number of iterations, e.g., K = 10 =⇒ unrolled network 

2El Ghaoui, Laurent, et al. (2021) "Implicit deep learning." SIMODS 
3Bai et al (2019) "Deep Equilibrium Models" NeurIPS ’19 

Implicit L2O 4 



L2O Description and Forward Propagation 

Make a model by parameterizing an optimization problem via Θ to get 

xΘ,d = arg min fΘ(x; d) ⇐⇒ xΘ,d = TΘ(xΘ,d; d) (1) 
x∈C 

Note: Constraints/analytic cost functions can be included by domain experts. 

Example: projected gradient descent: TΘ(xk; d) = PC (xk − α∇xfΘ(xk; d)) 

Forward propagation consists of applying an iterative (or fxed point) algorithm repeatedly 

x k+1 = TΘ(x k; d), k = 1, . . . , K (2) 

Fixed number of iterations, e.g., K = 10 =⇒ unrolled network 

Iterate until convergence (K ≫ 1) =⇒ Implicit Networks2 3 (outputs satisfy 

optimality/feasibility guarantees!) 
2El Ghaoui, Laurent, et al. (2021) "Implicit deep learning." SIMODS 
3Bai et al (2019) "Deep Equilibrium Models" NeurIPS ’19 

Implicit L2O 4 



Assumption 1: Contractiveness of TΘ 

Banach Fixed Point Theorem
For any x1 ∈ U , if Assumption 1 holds, then the sequence {xk} generated by

xk+1 = TΘ(xk; d), for all k ∈ N, (3)

converges linearly to the unique fxed point x⋆
d.

Remark: If TΘ is a contraction in x, we have well-defned implicit network

Well-Defned Implicit Network 

For fxed d, there exists γ ∈ [0, 1) such that 

∥TΘ(x1; d) − TΘ(x2; d)∥ ≤ γ∥x1 − x2∥, for all x1, x2 ∈ U . 

Implicit L2O 5 



Assumption 1: Contractiveness of TΘ 

Banach Fixed Point Theorem 

Remark: If TΘ is a contraction in x, we have well-defned implicit network

Well-Defned Implicit Network 

For fxed d, there exists γ ∈ [0, 1) such that 

∥TΘ(x1; d) − TΘ(x2; d)∥ ≤ γ∥x1 − x2∥, for all x1, x2 ∈ U . 

For any x1 ∈ U , if Assumption 1 holds, then the sequence {xk} generated by 

k+1 k; d),x = TΘ(x for all k ∈ N, (3) 

⋆converges linearly to the unique fxed point xd. 

Implicit L2O 5 



Assumption 1: Contractiveness of TΘ 

Banach Fixed Point Theorem 

Well-Defned Implicit Network 

For fxed d, there exists γ ∈ [0, 1) such that 

∥TΘ(x1; d) − TΘ(x2; d)∥ ≤ γ∥x1 − x2∥, for all x1, x2 ∈ U . 

For any x1 ∈ U , if Assumption 1 holds, then the sequence {xk} generated by 

x k+1 = TΘ(x k; d), for all k ∈ N, (3) 

⋆converges linearly to the unique fxed point xd. 

Remark: If TΘ is a contraction in x, we have well-defned implicit network 

Implicit L2O 5 



Training Implicit Networks 

Training Implicit Networks 

Implicit L2O 6 



where

xΘ,di = argminx∈C fΘ(x; di)

or equivalently: xΘ,di = TΘ(xΘ,di ; di)

dℓ

dΘ = dℓ

dxΘ

dxΘ
dΘ . How to compute dxΘ

dΘ ?

� � �

Implicit L2O: The Learning Problem 

⋆Given data {(di, x )} the training problem is given by di 

⋆min ℓ xΘ,di , x (4)di
Θ 

i 

Implicit L2O 7 



or equivalently: xΘ,di = TΘ(xΘ,di ; di)

dℓ

dΘ = dℓ

dxΘ

dxΘ
dΘ . How to compute dxΘ

dΘ ?

� � �

Implicit L2O: The Learning Problem 

⋆Given data {(di, x )} the training problem is given by di 

⋆min ℓ xΘ,di , x (4)di
Θ 

i 

where 

xΘ,di = arg minx∈C fΘ(x; di) 

Implicit L2O 7 



dℓ

dΘ = dℓ

dxΘ

dxΘ
dΘ . How to compute dxΘ

dΘ ?

� � �

Implicit L2O: The Learning Problem 

⋆Given data {(di, x )} the training problem is given by di 

⋆min ℓ xΘ,di , x (4)di
Θ 

i 

where 

xΘ,di = arg minx∈C fΘ(x; di) 

or equivalently: xΘ,di = TΘ(xΘ,di ; di) 

Implicit L2O 7 



� � �

Implicit L2O: The Learning Problem 

⋆Given data {(di, x )} the training problem is given by di 

⋆min ℓ xΘ,di , x (4)di
Θ 

i 

where 

xΘ,di = arg minx∈C fΘ(x; di) 

or equivalently: xΘ,di = TΘ(xΘ,di ; di) 

dℓ dℓ dxΘ dxΘ= 
dΘ 

. How to compute ? 
dΘ dxΘ dΘ 

Implicit L2O 7 



Backpropagation 

Backpropagating Through Implicit Networks 

Implicit L2O 8 



If network converges in K iterations, we need to apply the chain rule K times:
dxΘ(d)

dΘ = dxK
Θ

dΘ = dxK
Θ

dxK−1
Θ

dxK−1
Θ

dΘ + ∂xK

∂Θ

dxK−1
Θ

dΘ = dxK−1
Θ

dxK−2
Θ

dxK−2
Θ

dΘ + ∂xK−1
Θ

∂Θ
...

dx2Θ
dΘ = dx2Θ

dx1Θ

dx1Θ
dΘ + ∂x2Θ

∂Θ

memory requirements grow linearly in depth (O(K)) =⇒ intractable for implicit networks

Standard Backpropagation 

To train the implicit L2O network, we need to compute the gradient of the loss function 

d dℓ dxΘ,d[ℓ(xΘ,d, xd)] = . 
dΘ dx dΘ 

Implicit L2O 9 



dxΘ(d)
dΘ = dxK

Θ
dΘ = dxK

Θ
dxK−1
Θ

dxK−1
Θ

dΘ + ∂xK

∂Θ

dxK−1
Θ

dΘ = dxK−1
Θ

dxK−2
Θ

dxK−2
Θ

dΘ + ∂xK−1
Θ

∂Θ
...

dx2Θ
dΘ = dx2Θ

dx1Θ

dx1Θ
dΘ + ∂x2Θ

∂Θ

memory requirements grow linearly in depth (O(K)) =⇒ intractable for implicit networks

Standard Backpropagation 

To train the implicit L2O network, we need to compute the gradient of the loss function 

d dℓ dxΘ,d[ℓ(xΘ,d, xd)] = . 
dΘ dx dΘ 

If network converges in K iterations, we need to apply the chain rule K times: 

Implicit L2O 9 



...

dx2Θ
dΘ = dx2Θ

dx1Θ

dx1Θ
dΘ + ∂x2Θ

∂Θ

memory requirements grow linearly in depth (O(K)) =⇒ intractable for implicit networks

Standard Backpropagation 

To train the implicit L2O network, we need to compute the gradient of the loss function 

d dℓ dxΘ,d[ℓ(xΘ,d, xd)] = . 
dΘ dx dΘ 

If network converges in K iterations, we need to apply the chain rule K times: 
dxΘ(d) dxK 

Θ dxK 
Θ Θ ∂xKdxK−1 

= = + 
dΘ dΘ dxK 

Θ 
−1 dΘ ∂Θ 

dxK−1 dxK−1 dxK−2 ∂xK−1 
Θ Θ Θ Θ 

dΘ = 
dxK 
Θ 
−2 dΘ + 

∂Θ 

Implicit L2O 9 



memory requirements grow linearly in depth (O(K)) =⇒ intractable for implicit networks

Standard Backpropagation 

To train the implicit L2O network, we need to compute the gradient of the loss function 

d dℓ dxΘ,d[ℓ(xΘ,d, xd)] = . 
dΘ dx dΘ 

If network converges in K iterations, we need to apply the chain rule K times: 
dxΘ(d) dxK dxK dxK−1 ∂xK 

Θ Θ Θ= = + 
dΘ dΘ dxK 

Θ 
−1 dΘ ∂Θ 

dxK−1 dxK−1 dxK−2 ∂xK−1 
Θ Θ Θ Θ= + 

dΘ dxK 
Θ 
−2 dΘ ∂Θ 

... 

dx2 dx2 dx1 ∂x2 
Θ Θ Θ Θ= 

dΘ dx1 dΘ + 
∂ΘΘ 

Implicit L2O 9 



Standard Backpropagation 

To train the implicit L2O network, we need to compute the gradient of the loss function 

d dℓ dxΘ,d[ℓ(xΘ,d, xd)] = . 
dΘ dx dΘ 

If network converges in K iterations, we need to apply the chain rule K times: 
dxΘ(d) dxK dxK dxK−1 ∂xK 

Θ Θ Θ= = + 
dΘ dΘ dxK 

Θ 
−1 dΘ ∂Θ 

dxK−1 dxK−1 dxK−2 ∂xK−1 
Θ Θ Θ Θ 

dΘ = 
dxK 
Θ 
−2 dΘ + 

∂Θ 

... 

dx2 dx2 dx1 ∂x2 
Θ Θ Θ Θ= 

dΘ dx1Θ dΘ + 
∂Θ 

memory requirements grow linearly in depth (O(K)) =⇒ intractable for implicit networks 

Implicit L2O 9 



Computation of its gradient can be done using the Implicit Function Theorem:

dxΘ
dΘ = dTΘ

dx

dxΘ
dΘ + ∂TΘ

∂Θ

=⇒ dxΘ
dΘ = J−1Θ

∂TΘ
∂Θ , where JΘ ≜ I − dTΘ

dx
.

Memory required to compute dxΘ,d

dΘ is constant in depth! ✓

Unfortunately, solving for J−1Θ ∂T
∂Θ is often very expensive �

Implicit Jacobian-based Backpropagation 

Recalling the output of an implicit network is the fxed point of TΘ: 

xΘ,d = TΘ(xΘ,d; d), 

Implicit L2O 10 



dxΘ
dΘ = dTΘ

dx

dxΘ
dΘ + ∂TΘ

∂Θ

=⇒ dxΘ
dΘ = J−1Θ

∂TΘ
∂Θ , where JΘ ≜ I − dTΘ

dx
.

Memory required to compute dxΘ,d

dΘ is constant in depth! ✓

Unfortunately, solving for J−1Θ ∂T
∂Θ is often very expensive �

Implicit Jacobian-based Backpropagation 

Recalling the output of an implicit network is the fxed point of TΘ: 

xΘ,d = TΘ(xΘ,d; d), 

Computation of its gradient can be done using the Implicit Function Theorem: 

Implicit L2O 10 



=⇒ dxΘ
dΘ = J−1Θ

∂TΘ
∂Θ , where JΘ ≜ I − dTΘ

dx
.

Memory required to compute dxΘ,d

dΘ is constant in depth! ✓

Unfortunately, solving for J−1Θ ∂T
∂Θ is often very expensive �

Implicit Jacobian-based Backpropagation 

Recalling the output of an implicit network is the fxed point of TΘ: 

xΘ,d = TΘ(xΘ,d; d), 

Computation of its gradient can be done using the Implicit Function Theorem: 

dxΘ dTΘ dxΘ ∂TΘ= 
dΘ dx dΘ + 

∂Θ 

Implicit L2O 10 



Memory required to compute dxΘ,d

dΘ is constant in depth! ✓

Unfortunately, solving for J−1Θ ∂T
∂Θ is often very expensive �

Implicit Jacobian-based Backpropagation 

Recalling the output of an implicit network is the fxed point of TΘ: 

xΘ,d = TΘ(xΘ,d; d), 

Computation of its gradient can be done using the Implicit Function Theorem: 

dxΘ dTΘ dxΘ ∂TΘ= 
dΘ dx dΘ + 

∂Θ 
dxΘ ∂TΘ dTΘ=⇒ = JΘ 

−1 where JΘ ≜ I − . 
dΘ ∂Θ 

, 
dx 

Implicit L2O 10 



Unfortunately, solving for J−1Θ ∂T
∂Θ is often very expensive �

Implicit Jacobian-based Backpropagation 

Recalling the output of an implicit network is the fxed point of TΘ: 

xΘ,d = TΘ(xΘ,d; d), 

Computation of its gradient can be done using the Implicit Function Theorem: 

dxΘ dTΘ dxΘ ∂TΘ= 
dΘ dx dΘ + 

∂Θ 
dxΘ ∂TΘ dTΘ=⇒ = J −1 where JΘ ≜ I − .Θ ∂Θ 

,
dΘ dx 

Memory required to compute dxΘ,d is constant in depth! ✓dΘ 

Implicit L2O 10 



�

Implicit Jacobian-based Backpropagation 

Recalling the output of an implicit network is the fxed point of TΘ: 

xΘ,d = TΘ(xΘ,d; d), 

Computation of its gradient can be done using the Implicit Function Theorem: 

dxΘ dTΘ dxΘ ∂TΘ= 
dΘ dx dΘ + 

∂Θ 
dxΘ ∂TΘ dTΘ=⇒ = J −1 where JΘ ≜ I − .Θ ∂Θ 

,
dΘ dx 

Memory required to compute dxΘ,d is constant in depth! ✓dΘ 

∂T Unfortunately, solving for J −1 
∂Θ is often very expensive Θ 

Implicit L2O 10 



Jacobian-free Backprop (JFB) 

Jacobian-free Backpropagation (JFB) 

Implicit L2O 11 



Key Idea: replace JΘ with identity4.

That is, approximate true gradient

d

dΘ[ℓ(xΘ,d, xd)] =
dℓ

dxΘ,d
J−1Θ

∂T

∂Θ

with

pΘ =
dℓ

dxΘ,d

∂T

∂Θ
Remark: cost equivalent to computing the gradient of one layer!

Proposed: Jacobian-free Backprop (JFB) 

Goal: Avoid solving Jacobian-based equation and memory issues when training implicit networks. 

4Wu Fung et al. (2022) “JFB: Jacobian-Free Backpropagation for Implicit Networks.” AAAI 22 
Implicit L2O 12 



That is, approximate true gradient

d

dΘ[ℓ(xΘ,d, xd)] =
dℓ

dxΘ,d
J−1Θ

∂T

∂Θ

with

pΘ =
dℓ

dxΘ,d

∂T

∂Θ
Remark: cost equivalent to computing the gradient of one layer!

Proposed: Jacobian-free Backprop (JFB) 

Goal: Avoid solving Jacobian-based equation and memory issues when training implicit networks. 

Key Idea: replace JΘ with identity4. 

4Wu Fung et al. (2022) “JFB: Jacobian-Free Backpropagation for Implicit Networks.” AAAI 22 
Implicit L2O 12 



Remark: cost equivalent to computing the gradient of one layer!

Proposed: Jacobian-free Backprop (JFB) 

Goal: Avoid solving Jacobian-based equation and memory issues when training implicit networks. 

Key Idea: replace JΘ with identity4. 

That is, approximate true gradient 

d dℓ ∂T [ℓ(xΘ,d, xd)] = J −1 

dΘ dxΘ,d 
Θ ∂Θ 

with 
dℓ ∂T 

pΘ = 
dxΘ,d ∂Θ 

4Wu Fung et al. (2022) “JFB: Jacobian-Free Backpropagation for Implicit Networks.” AAAI 22 
Implicit L2O 12 



Proposed: Jacobian-free Backprop (JFB) 

Goal: Avoid solving Jacobian-based equation and memory issues when training implicit networks. 

Key Idea: replace JΘ with identity4. 

That is, approximate true gradient 

d dℓ ∂T [ℓ(xΘ,d, xd)] = J −1 

dΘ dxΘ,d 
Θ ∂Θ 

with 
dℓ ∂T 

pΘ = 
dxΘ,d ∂Θ 

Remark: cost equivalent to computing the gradient of one layer! 

4Wu Fung et al. (2022) “JFB: Jacobian-Free Backpropagation for Implicit Networks.” AAAI 22 
Implicit L2O 12 



Main Theorem: Descent of JFB
If Assumptions 1 and 2 hold for given Θ and d, then

−pΘ = −
dℓ

dxΘ,d

∂T

∂Θ

forms a descent direction for ℓ(xΘ,d, xd) with respect to Θ.

Jacobian-free Backprop (JFB) 

Assumption 1 
TΘ is continuously dif’ble w.r.t Θ 

Assumption 2 

M = ∂T 
∂Θ has full column rank and is well-conditioned s.t. κ(M⊤M) ≤ 1 

γ 

Implicit L2O 13 



Main Theorem: Descent of JFB 

Jacobian-free Backprop (JFB) 

Assumption 1 
TΘ is continuously dif’ble w.r.t Θ 

Assumption 2 

M = ∂T 
∂Θ has full column rank and is well-conditioned s.t. κ(M⊤M) ≤ 1 

γ 

If Assumptions 1 and 2 hold for given Θ and d, then 

dℓ ∂T −pΘ = − 
dxΘ,d ∂Θ 

forms a descent direction for ℓ(xΘ,d, xd) with respect to Θ. 

Implicit L2O 13 



Implementation of JFB 

Figure 1: Sample PyTorch code for backpropagation 

Remark: backpropagation is simple in PyTorch framework! 

Implicit L2O 14 



Jacobian-Free Backprop (JFB) 

JFB works! 

0 250 500 750 1,000
75

80

85

90

95

Jacobian-based
Backprop

Proposed Backprop (JFB)

Epoch

T
es
t
A
cc
u
ra
cy

%

0 20 40 60 80 100 120 140
75

80

85

90

95

Jacobian-based
Backprop

Proposed Backprop (JFB)

Time (hr)

T
es
t
A
cc
u
ra
cy

%

Figure 2: Training an implicit neural network on CIFAR10. JFB is faster and yields higher test 

accuracy than Jacobian-based backprop. 

Implicit L2O 15 



L2O Experiment: Computed Tomography 

Comparison of techniques, ranging from traditional to fully data-driven 

(L2O Model) = NΘ(d) = arg min fΘ(Kx) s.t. Ax = b (5) 
x∈[0,1]n 

Implicit L2O 16 



Problem Formulation:

xΘ(d) ≜ argmin
x∈C

wΘ(d)⊤x (6)

where C = {x : Ax = b

C1

, x ≥ 0
C2

} encodes origin-destination constraints and fow conservation

constraints.

Problem: projection onto C nontrivial =⇒ fwd prop. and backprop. expensive, even with JFB.

Remedy: Defne implicit network using three-operator splitting:

T (x; d) = x− PC1(x) + PC2 (2PC1(x)− x−∇fΘ(PC1(x); d))) , (7)

where note that PC1 and PC2 are trivial to compute.

� �� � � �� �

L2O Experiment: Shortest Path Problem 

Shortest Path Problem: given a graph and origin/destination nodes, fnd the path that incurs 

minimal cost. 

Implicit L2O 17 



Problem: projection onto C nontrivial =⇒ fwd prop. and backprop. expensive, even with JFB.

Remedy: Defne implicit network using three-operator splitting:

T (x; d) = x− PC1(x) + PC2 (2PC1(x)− x−∇fΘ(PC1(x); d))) , (7)

where note that PC1 and PC2 are trivial to compute.

� �� � � �� �

L2O Experiment: Shortest Path Problem 

Shortest Path Problem: given a graph and origin/destination nodes, fnd the path that incurs 

minimal cost. 

Problem Formulation: 

xΘ(d) ≜ arg min wΘ(d)⊤ x (6) 
x∈C 

where C = {x : Ax = b, x ≥ 0} encodes origin-destination constraints and fow conservation 
C1 C2

constraints. 

Implicit L2O 17 



Remedy: Defne implicit network using three-operator splitting:

T (x; d) = x− PC1(x) + PC2 (2PC1(x)− x−∇fΘ(PC1(x); d))) , (7)

where note that PC1 and PC2 are trivial to compute.

� �� � � �� �

L2O Experiment: Shortest Path Problem 

Shortest Path Problem: given a graph and origin/destination nodes, fnd the path that incurs 

minimal cost. 

Problem Formulation: 

xΘ(d) ≜ arg min wΘ(d)⊤ x (6) 
x∈C 

where C = {x : Ax = b, x ≥ 0} encodes origin-destination constraints and fow conservation 
C1 C2

constraints. 

Problem: projection onto C nontrivial =⇒ fwd prop. and backprop. expensive, even with JFB. 

Implicit L2O 17 



� �� � � �� �

L2O Experiment: Shortest Path Problem 

Shortest Path Problem: given a graph and origin/destination nodes, fnd the path that incurs 

minimal cost. 

Problem Formulation: 

xΘ(d) ≜ arg min wΘ(d)⊤ x (6) 
x∈C 

where C = {x : Ax = b, x ≥ 0} encodes origin-destination constraints and fow conservation 
C1 C2

constraints. 

Problem: projection onto C nontrivial =⇒ fwd prop. and backprop. expensive, even with JFB. 

Remedy: Defne implicit network using three-operator splitting: 

T (x; d) = x − PC1 (x) + PC2 (2PC1 (x) − x −∇fΘ(PC1 (x); d))) , (7) 

where note that PC1 and PC2 are trivial to compute. 
Implicit L2O 17 



L2O Experiment: Shortest Path Problem 

Test Loss Training Time (mins) 

DYS (ours)

CVX

0 50 100

10−2

Problem Size

1

DYS (ours)

CVX

0 50 100

101

102

103

Problem Size

1

Implicit L2O 18 



Implicit L2O models can be efciently trained using Jacobian-Free Backpropagation

Implicit L2O + JFB have found success in trafc fow, computed tomography, and knapsack

problem

More details can be found in papers:

Explainable AI via Learning to Optimize, Scientifc Reports, 2023

JFB: Jacobian-Free Backpropagation for Implicit Networks, AAAI, 2022

Three Operator Splitting for Learning to Predict Equilibria in Convex Games, SIMODS,

2024

Learning to Solve Integer Linear Programs with Davis-Yin Splitting, TMLR, 2024

Summary 

Implicit L2O: optimization-based network architectures with guarantees on their outputs 

Implicit L2O 19 



Implicit L2O + JFB have found success in trafc fow, computed tomography, and knapsack

problem

More details can be found in papers:

Explainable AI via Learning to Optimize, Scientifc Reports, 2023

JFB: Jacobian-Free Backpropagation for Implicit Networks, AAAI, 2022

Three Operator Splitting for Learning to Predict Equilibria in Convex Games, SIMODS,

2024

Learning to Solve Integer Linear Programs with Davis-Yin Splitting, TMLR, 2024

Summary 

Implicit L2O: optimization-based network architectures with guarantees on their outputs 

Implicit L2O models can be efciently trained using Jacobian-Free Backpropagation 

Implicit L2O 19 



More details can be found in papers:

Explainable AI via Learning to Optimize, Scientifc Reports, 2023

JFB: Jacobian-Free Backpropagation for Implicit Networks, AAAI, 2022

Three Operator Splitting for Learning to Predict Equilibria in Convex Games, SIMODS,

2024

Learning to Solve Integer Linear Programs with Davis-Yin Splitting, TMLR, 2024

Summary 

Implicit L2O: optimization-based network architectures with guarantees on their outputs 

Implicit L2O models can be efciently trained using Jacobian-Free Backpropagation 

Implicit L2O + JFB have found success in trafc fow, computed tomography, and knapsack 

problem 

Implicit L2O 19 



Summary 

Implicit L2O: optimization-based network architectures with guarantees on their outputs 

Implicit L2O models can be efciently trained using Jacobian-Free Backpropagation 

Implicit L2O + JFB have found success in trafc fow, computed tomography, and knapsack 

problem 

More details can be found in papers: 

Explainable AI via Learning to Optimize, Scientifc Reports, 2023 

JFB: Jacobian-Free Backpropagation for Implicit Networks, AAAI, 2022 

Three Operator Splitting for Learning to Predict Equilibria in Convex Games, SIMODS, 

2024 

Learning to Solve Integer Linear Programs with Davis-Yin Splitting, TMLR, 2024 

Implicit L2O 19 



Collaborators and Acknowledgments 

Howard Heaton Daniel McKenzie Stanley Osher Qiuwei Li Wotao Yin 

Typal Academy CO School of Mines UCLA Alibaba Alibaba 

Implicit L2O 20 


	Structure Bookmarks
	Motivation: ML vs. Optimization Models
	Learning to Optimize
	Training Implicit Networks
	Backpropagating Through Implicit Networks
	Jacobian-free Backpropagation
	Summary
	Collaborators



