On active constraints in optimal power flow Learning optimal solutions and identifying important constraints

Line A. Roald

University of Wisconsin – Madison

with **Sidhant Misra** (LANL), **Yee Sian Ng** (MIT) and **Daniel K. Molzahn** (Georgia Tech)

NREL Workshop, April 12 2019

Transmission System Operation

Transmission System Operation

Transmission System Operation

changing power flows

Impact of uncertainty?

How to maintain grid security?

Chance-constrained, robust, stochastic optimization

Adapt to uncertainty in real time!

The Optimal Power Flow Problem

Goal: Low cost operation, while enforcing technical limits

min $\sum_{i \in \mathcal{G}} (c_{2,i} p_{G,i}^2 + c_{1,i} p_{G,i})$

Minimize generation cost

s.t.

 $f(\theta, \nu, p, q) = 0,$

 $p_{G,g}^{min} \le p_{G,g} \le p_{G,g}^{max}, g \in \mathcal{G}$ $q_{G,g}^{min} \le q_{G,g} \le q_{G,g}^{max}, g \in \mathcal{G}$

 $v_i^{min} \leq v_i \leq v_i^{max}, \quad i \in \mathcal{B}$

 $s_{L,j}(\theta, v, p, q) \leq s_{L,j}^{max}, j \in \mathcal{L}$

Non-Linear AC Power Flow

Generation constraints

Voltage constraints

Transmission constraints

Goal: Low cost operation, while enforcing technical limits

min $\sum_{i \in \mathcal{G}} (c_{2,i} p_{G,i}^2 + c_{1,i} p_{G,i})$

s.t.

 $f(\theta, v, p, q) = 0,$

 $\begin{array}{l} p_{G,g}^{min} \leq p_{G,g} \leq p_{G,g}^{max}, \ g \in \mathcal{G} \\ q_{G,g}^{min} \leq q_{G,g} \leq q_{G,g}^{max}, \ g \in \mathcal{G} \end{array}$

 $v_i^{min} \le v_i \le v_i^{max}, \quad i \in \mathcal{B}$

 $s_{L,j}(\theta, v, p, q) \leq s_{L,j}^{max}, \quad j \in \mathcal{L}$

Minimize generation cost

Non-Linear AC Power Flow

Generation constraints

Voltage constraints

Transmission constraints

Observation 1: Typically only *very few transmission constraints* are **active** at optimum!

Can be exploited algorithmically!

. . .

E.g. constraint generation [Bienstock, Harnett and Chertkov, SIAM Review, 2013]

Impact of renewable energy variations/load uncertainty ω ?

min
$$\sum_{i \in G} (c_{2,i} p_{G,i}(\omega)^2 + c_{1,i} p_{G,i}(\omega))$$
 Minimize generation cost

s.t.

 $f(\theta(\omega), v(\omega), p(\omega), q(\omega)) = 0,$

Non-Linear AC Power Flow

 $p_{G,g}^{min} \le p_{G,g}(\omega) \le p_{G,g}^{max}, \ g \in \mathcal{G}$ $q_{G,g}^{min} \le q_{G,g}(\omega) \le q_{G,g}^{max}, \ g \in \mathcal{G}$

 $v_i^{min} \le v_i(\omega) \le v_i^{max}, \quad i \in \mathcal{B}$

 $i_{L,j}(\omega) \leq i_{L,j}^{max}, \quad j \in \mathcal{L}$

Generation constraints

Voltage constraints

Transmission constraints

Impact of renewable energy variations/load uncertainty ω ?

min
$$\sum_{i \in \mathcal{G}} (c_{2,i} p_{G,i}(\omega)^2 + c_{1,i} p_{G,i}(\omega))$$
 Minimize generation cost

s.t.

 $f(\theta(\omega), v(\omega), p(\omega), q(\omega)) = 0,$

Non-Linear AC Power Flow

 $p_{G,g}^{min} \le p_{G,g}(\omega) \le p_{G,g}^{max}, \ g \in \mathcal{G}$ $q_{G,g}^{min} \le q_{G,g}(\omega) \le q_{G,g}^{max}, \ g \in \mathcal{G}$

 $v_i^{min} \le v_i(\omega) \le v_i^{max}, \quad i \in \mathcal{B}$

 $i_{L,j}(\omega) \leq i_{L,j}^{max}, \quad j \in \mathcal{L}$

Generation constraints

Voltage constraints

Transmission constraints

Observation 2: Typically only very few transmission constraints are **ever** active even for different parameters ω !

The topic of this talk!

Is this observation true?? How can we use it?? 1. Learning solutions to (power system) optimization problems through optimal active sets

2. Identifying potentially active constraints

Learning solutions to (power system) optimization problems

Sidhant Misra (LANL)

Yee Sian Ng (MIT)

Yee Sian Ng, Sidhant Misra, Line Roald and Scott Backhaus, «Statistical Learning for DC Optimal Power Flow», Power System Computation Conference (PSCC), 2018

Sidhant Misra, Line Roald and Yee Sian Ng, «Learning for Constrained Optimization», submitted, available online: https://arxiv.org/abs/1802.09639

Impact of renewable energy variations/load uncertainty ω ?

min
$$\sum_{i \in G} (c_{2,i} p_{G,i}(\omega)^2 + c_{1,i} p_{G,i}(\omega))$$
 Minimize generation cost

s.t.

 $f(\theta(\omega), v(\omega), p(\omega), q(\omega)) = 0,$

Non-Linear AC Power Flow

 $p_{G,g}^{min} \le p_{G,g}(\omega) \le p_{G,g}^{max}, \ g \in \mathcal{G}$ $q_{G,g}^{min} \le q_{G,g}(\omega) \le q_{G,g}^{max}, \ g \in \mathcal{G}$

 $v_i^{min} \le v_i(\omega) \le v_i^{max}, \quad i \in \mathcal{B}$

 $i_{L,j}(\omega) \leq i_{L,j}^{max}, \quad j \in \mathcal{L}$

Generation constraints

Voltage constraints

Transmission constraints

Resolve problem every 5-15 min! For each ω , obtain $p_G^*(\omega)$

min $\sum_{i \in \mathcal{G}} (c_{2,i} p_{G,i}(\omega)^2 + c_{1,i} p_{G,i}(\omega))$ Minimize generation cost

s.t.

 $f(\theta(\omega), v(\omega), p(\omega), q(\omega)) = 0,$

 $p_{G,g}^{min} \le p_{G,g}(\omega) \le p_{G,g}^{max}, \ g \in \mathcal{G}$ $q_{G,g}^{min} \le q_{G,g}(\omega) \le q_{G,g}^{max}, \ g \in \mathcal{G}$

 $v_i^{min} \leq v_i(\omega) \leq v_i^{max}, \quad i \in \mathcal{B}$

 $i_{L,j}(\omega) \leq i_{L,j}^{max}, \quad j \in \mathcal{L}$

Non-Linear AC Power Flow

Generation constraints

Voltage constraints

Transmission constraints

OPF at $T_1: \omega_1 \to p^*_G(\omega_1)$	OPF at T_2 : ω_2
$\min_{P_G(\omega)} \sum_{i \in \mathcal{G}} \left(c_{2,i} p_{G,i}(\omega)^2 + c_{1,i} p_{G,i}(\omega) \right)$	$\min_{P_G(\omega)} \sum_{i \in \mathcal{G}} (c_{2,i} p_{G,i}(\omega))^2$
s.t.	s.t.
$f(\theta(\omega), v(\omega), p(\omega), q(\omega)) = 0,$	$f(\theta(\omega), v(\omega), p(\omega), q(\omega))$
$ \begin{aligned} p^{min}_{G,g} &\leq p_{G,g}(\omega) \leq p^{max}_{G,g}, \ g \in \mathcal{G} \\ q^{min}_{G,g} &\leq q_{G,g}(\omega) \leq q^{max}_{G,g}, \ g \in \mathcal{G} \end{aligned} $	$p_{G,g}^{min} \le p_{G,g}(\omega) \le p_{G,g}^{max}$ $q_{G,g}^{min} \le q_{G,g}(\omega) \le q_{G,g}^{max}$
$v_i^{min} \leq v_i(\omega) \leq v_i^{max}, i \in \mathcal{B}$	$v_i^{min} \leq v_i(\omega) \leq v_i^{max},$
$i_{L,j}\left(\omega\right) \leq i_{L,j}^{max}, j \in \mathcal{L}$	$i_{L,j}\left(\omega\right) \leq i_{L,j}^{max}, j \in \mathcal{L}$

 $\begin{array}{ll} : \omega_{2} \rightarrow p_{G}^{*}(\omega_{2}) & \text{OPF at } T_{3} : \omega_{3} \rightarrow p_{G}^{*}(\omega_{3}) \\ \\ \downarrow_{i,i}(\omega)^{2} + c_{1,i} p_{G,i}(\omega)) & \underset{P_{G}(\omega)}{\min} \sum_{i \in \mathcal{G}} (c_{2,i} p_{G,i}(\omega)^{2} + c_{1,i} p_{G,i}(\omega)) \\ \\ \text{s.t.} \\ \\ (\omega), q(\omega)) = 0, & f(\theta(\omega), v(\omega), p(\omega), q(\omega)) = 0, \\ \\ & \int_{\mathcal{G},g} p_{G,g}^{max}, g \in \mathcal{G} \\ \\ \downarrow_{g,g}^{max}, g \in \mathcal{G} \\ \\ v_{i}^{max}, i \in \mathcal{B} \\ j \in \mathcal{L} \\ \end{array} \qquad \begin{array}{l} \text{oprime} P_{G,i}(\omega) \leq p_{G,i}^{max}, g \in \mathcal{G} \\ \\ v_{i}^{min} \leq v_{i}(\omega) \leq v_{i}^{max}, i \in \mathcal{B} \\ \\ i_{L,i}(\omega) \leq i_{L,i}^{max}, j \in \mathcal{L} \end{array}$

Can we use learning to speed up the solution process

by using information from past solutions $(\omega_i, p_G^*(\omega_i))$?

. . .

Learning for optimization

Can we use learning to speed up the solution process

by using information from past solutions $(\omega_i, p_G^*(\omega_i))$?

First attempt: Train a neural net

• This didn't work well...

(DISCLAIMER: I will admit that we gave up quite fast!)

- This didn't work well...
 - Hard to satisfy safety constraints!

In-depth literature review: Sidhant Misra, Line Roald and Yee Sian Ng, «Learning for Constrained Optimization», submitted, available online: https://arxiv.org/abs/1802.09639

This didn't work well...

- Hard to satisfy safety constraints!
- Projection back onto feasible space cause suboptimality...

In-depth literature review: Sidhant Misra, Line Roald and Yee Sian Ng, «Learning for Constrained Optimization», submitted, available online: https://arxiv.org/abs/1802.09639

This didn't work well...

- Hard to satisfy safety constraints!
- Projection back onto feasible space cause suboptimality...
- Challenging: High-dimensional input → *High dimensional output*

In-depth literature review: Sidhant Misra, Line Roald and Yee Sian Ng, «Learning for Constrained Optimization», submitted, available online: https://arxiv.org/abs/1802.09639

This didn't work well...

- Hard to satisfy safety constraints!
- Projection back onto feasible space cause suboptimality...
- Challenging: High-dimensional input → *High dimensional output*
- This can work well under some circumstances

Wide enough and deep enough, and with enough data! [Karg and Lucia, 2018]

We have a mathematical optimization problem

- can we use **more information** about the **problem structure**?

Think again: How can we leverage pre-existing knowledge about the solution?

Think again: How can we leverage pre-existing knowledge about the solution?

New idea: Learn the optimal set of active constraints!

Set of constraints that are active at optimum!

- Equality (power flow) constraints are always active
- Only very few of the inequality constraints are active
 - Generation constraints
 - Voltage constraints
 - Transmission constraints

Learn optimal set of active constraints

- Why?
 - Optimal active set is the "minimal" information we need to recover optimal solution
 - Inherently encodes information about physical constraints and technical limits
 - Finite, low dimensional object
 - Nice physical interpretation (power system operational pattern)

Learn optimal set of active constraints

Related to explicit MPC

 Explicit MPC – each optimal active set corresponds to an optimal affine control policy [Bemporad et al, 2002], [Pannochia, Rawlings, Wright, 2007], [Zeilinger et al, 2011], [Karg and Lucia, 2018], ...

Look only at specific classes of problems Not very scalable Do not consider input distribution over ω

Ensemble Policy

Candidates for optimal active set

Solve problem given the active set

- \rightarrow Solve a reduced problem with fewer constraints!
- \rightarrow Solve a set of linear equations (linear problem)!

Easier than solving the full optimal power flow problem

Ensemble Policy

Candidates for optimal active set

Solve problem given the optimal active set

Evaluate cost and feasibility

Ensemble Policy

Candidates for optimal active set

Solve problem given the optimal active set

Evaluate cost and feasibility

Pick best (optimal?) solution

Limits of the Approach

Works well if the number of active sets \mathcal{A}_n is small!

Total number of possible active sets is exponential ☺

Maybe only a few are practically relevant? ☺

Limits of the Approach

How to identify the collection of **relevant** active sets?

High probability that one of the active sets is optimal for a new realization ω

Do NOT search entire parameter space!

Using Sampling to Learn Important Active Sets

Learning Collection of Optimal Active Sets

samples of input parameters •

all possible active sets color: discovered active sets grey: undiscovered active sets

samples of input parameters

Collection of observed active sets

$$\mathcal{O}_M = \{\mathcal{A}^1\}$$

Collection of observed active sets

$$\mathcal{O}_M = \{\mathcal{A}^1\}$$

$$\mathcal{O}_M = \{\mathcal{A}^1, \mathcal{A}^2\}$$

Collection of observed active sets

$$\mathcal{O}_M = \{\mathcal{A}^1, \mathcal{A}^2\}$$

$$\mathcal{O}_M = \{\mathcal{A}^1, \mathcal{A}^2\}$$

color: discovered active sets grey: undiscovered active sets Collection of observed active sets

$$\mathcal{D}_M = \{\mathcal{A}^1, \mathcal{A}^2, \mathcal{A}^N\}$$

Collection of observed active sets

$$\mathcal{O}_M = \{\mathcal{A}^1, \mathcal{A}^2, \dots, \mathcal{A}^N\}$$

samples of input parameters

all possible active sets color: discovered active sets grey: undiscovered active sets

• samples of input parameters

all possible active sets color: discovered active sets grey: undiscovered active sets Collection of observed active sets

$$\mathcal{O}_M = \{\mathcal{A}^1, \mathcal{A}^2, \dots, \mathcal{A}^N\}$$

When do I stop???

Streaming Algorithm to Learn Collection of Optimal Active Sets

Goal: Find a active sets that together have a high probability of being optimal!

1. Observe optimal active sets for M samples

Collection of **observed** active sets

1. Observe optimal active sets for M samples

Collection of **observed** active sets

2. Check "rate of discovery" for W samples

$$\begin{bmatrix} \mathcal{A}_1^* & \mathcal{A}_2^* & \dots & \mathcal{A}_W^* \end{bmatrix}$$

How frequently do we observe sets we have **not seen** before?

Rate of discovery: $R_{M,W} = \frac{N_{unobserved}}{N}$

where
$$W = \frac{2\gamma}{\epsilon^2} \max\{\log(M), \log(\underline{M})\}$$

$$\underline{M} = 1 + \left(\frac{\gamma}{\delta(\gamma-1)}\right)^{\frac{1}{\gamma-1}}$$

1. Observe optimal active sets for M samples

Collection of **observed** active sets

 If the rate of discovery is below the threshold R_{M,W} ≤ α − ε, stop.
performance guarantee 2. Check "rate of discovery" for W samples

$$\begin{bmatrix} \mathcal{A}_1^* & \mathcal{A}_2^* & \dots & \mathcal{A}_W^* \end{bmatrix}$$

How frequently do we observe sets we have **not seen** before?

Rate of discovery:
$$R_{M,W} = \frac{N_{unobserved}}{N}$$

where
$$W = \frac{2\gamma}{\epsilon^2} \max\{\log(M), \log(\underline{M})\}$$

$$\underline{M} = 1 + \left(\frac{\gamma}{\delta(\gamma-1)}\right)^{\frac{1}{\gamma-1}}$$

1. Observe optimal active sets for M samples

Collection of **observed** active sets

2. Check "rate of discovery" for W samples

$$\begin{array}{c|c} \mathcal{A}_1^* & \mathcal{A}_1^* & \dots & \mathcal{A}_W^* & \mathcal{A}_{W+1}^* \\ \end{array}$$

How frequently do we observe sets we have **not seen** before?

• If the rate of discovery is below the threshold $R_{M,W} \leq \alpha - \epsilon$, stop.

Guarantees performance at termination [Misra, Roald, Ng, 2018]

• If the rate of discovery is too high, add more samples.

1. Observe optimal active sets for M samples

Collection of **observed** active sets

2. Check "rate of discovery" for W samples

$$\begin{array}{c|c} \mathcal{A}_1^* & \mathcal{A}_1^* & \dots & \mathcal{A}_W^* & \mathcal{A}_{W+1}^* \end{array}$$

How frequently do we observe sets we have **not seen** before?

- If the rate of discovery is below the threshold $R_{M,W} \leq \alpha - \epsilon$, stop.
- If the rate of discovery is too high, add more samples.

Guaranteed to converge!

Guarantees performance at termination [Misra, Roald, Ng, 2018]

1. Observe optimal active sets for M samples

Collection of observed active sets

2. Check "rate of discovery" for W samples

$$\begin{array}{c|c} \mathcal{A}_1^* & \mathcal{A}_1^* & \dots & \mathcal{A}_W^* & \mathcal{A}_{W+1}^* \end{array}$$

How frequently do we observe sets we have **not seen** before?

• If the rate of discovery is below the threshold $R_{M,W} \leq \alpha - \epsilon$, stop.

Guarantees performance at termination [Misra, Roald, Ng, 2018]

• If the rate of discovery is too high, add more samples.

Guaranteed to converge fast for low number of optimal active sets! [Misra, Roald, Ng, 2018]

Practicability of the approach

Realization ω . . . \mathcal{A}_1 \mathcal{A}_2 \mathcal{A}_n . . . $p_2(\omega)$ Feasible Low cost

Simultaneously establishes

- Collection of optimal active sets
- Practicability of the approach

No assumptions on distribution

No assumptions on problem structure

Guaranteed to converge fast for low number of optimal active sets!

Results for the (linear) DC Optimal Power Flow Problem

Probabilistic guarantee: $\mathbb{P}_{\omega}(\pi(\mathcal{U}_M)) < \alpha = 0.05$,

 $W = \frac{2\gamma}{\epsilon^2} \max\{\log M, \log \underline{M}\} \text{ with } \underline{M} = 1 + \left(\frac{\gamma}{\delta(\gamma-1)}\right)^{\frac{1}{\gamma-1}}$

Max. difference: $\epsilon = 0.04$

Confidence level: $\delta = 0.01$

Hyperparameter: $\gamma = 2$

Termination:
$$R_{M,W} \leq 0.01$$

Initial W: W = 13'259(constant until M = 201)

Probabilistic guarantee: $\mathbb{P}_{\omega}(\pi(\mathcal{U}_M)) < \alpha = 0.05$, Termination: $R_{M,W} \leq 0.01$ Max. difference: $\epsilon = 0.04$ Confidence level: $\delta = 0.01$ $\nu = 2$ Hyperparameter: Initial W: W = 13'259 $W = \frac{2\gamma}{\epsilon^2} \max\{\log M, \log \underline{M}\} \text{ with } \underline{M} = 1 + \left(\frac{\gamma}{\delta(\nu-1)}\right)^{\frac{1}{\nu-1}}$ (constant until M = 201) Uniform distribution Normal distribution Uncertain loads: with support

 $\omega \sim \mathcal{N}(0, \sigma = 0.03d)$

 $\omega \in [-0.09d, 0.09d]$

Example – RTE 1951 bus test case

When there are few relevant active sets, the algorithm terminates fast!

Example – PSERC 200 bus test case

When there are few relevant active sets, the algorithm terminates fast!

Example – PSERC 200 bus test case

When there are many relevant active sets, the algorithm terminates slowly!

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nori	nal dist	ribution			Uniform distribution							
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$				
Low-Complexity														
case <mark>3_</mark> 1mbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0				
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0				
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0				
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0				
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998				
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984				
case57_ieee	2	Syst	em 56	Z@ 633	alogin	3	46	13'259	0.0	0.0				
case1888_rte	3	from	43'259	10001	0.0	3	10	13'259	0.0	0.0				
case1951_rte	5	4911	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901				
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926				
case24_ieee_rts	10	1456	18'209	0.0	0.0	11	64	13'259	0.0047	0.9941				
High-Complexity														
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	5.				
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897				
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901				
case240_pserc	2993	22'000	24'997	0.0795	5 <u>1</u> 3	2993	22'000	24'997	0.0795	2				

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nor	mal distr	ibution	Uniform distribution						
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K _M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	
Low-Complexity											
case3_1mbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case14_ieee	1	1	13'259	0.0	1.0	1	. 1	13'259	0.0	0.0	
case30_ieee	1	Nori	maladis	tributio	n 1.0	1	Unito	orm dist	ribution	0.0	
case39_epri	2	$u^2 \sim 1$	N160258	= 0.030	(1) 1.0	2	2 W	ith sup	po.pt08	0.9998	
case118_ieee	2	33	13'259	0.0	1.0	2	ω ⁴ ⊂ Γ	-17:258	A99821	0.9984	
case57_ieee	2	2	13'259	0.0003	0.9997	3	46 L	13'259	$[, 0.05u]_{0.0}$	0.0	
case1888_rte	3	6	13'259	0.0	0.0	3	10	13'259	0.0	0.0	
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901	
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926	
case24_ieee_rts	10	1456	18'209	0.0	0.0	11	64	13'259	0.0047	0.9941	
High-Complexity											
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	5	
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897	
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901	
case240_pserc	2993	22'000	24'997	0.0795	5 <u>5</u> 3	2993	22'000	24'997	0.0795	<u>.</u>	

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nor	mal distr	ibution		Uniform distribution					
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	
Low-Complexity											
case3_lmbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0	
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0	
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0	
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0	
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998	
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984	
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	1.0	
case1888_rte	3	6	13'259	0.0	1.0	3	10	13'259	0.0	1.0	
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901	
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926	
case24_ieee_rts	10	1456	18'209	1.0	1.0	11	64	13'259	0.0047	0.9941	
High-Complexity											
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	100	
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897	
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901	
case240_pserc	2993	22'000	24'997	0.0795	-	2993	22'000	24'997	0.0795		

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nor	mal distr	ibution	Uniform distribution					
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$
Low-Complexity										
case3_lmbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	1.0
case1888_rte	3	6	13'259	0.0	1.0	3	10	13'259	0.0	1.0
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926
case24_ieee_rts	10	1456	18'209	1.0	1.0	11	64	13'259	0.0047	0.9941

Few active sets!

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nori	mal distr	ibution	Uniform distribution					
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$
Low-Complexity										
case3_lmbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	1.0
case1888_rte	3	6	13'259	0.0	1.0	3	10	13'259	0.0	1.0
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926
case24_ieee_rts	10	1456	18'209	1.0	1.0	11	64	13'259	0.0047	0.9941
High-Complexity	_									
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901
case240_pserc	2993	22'000	24'997	0.0795	-	2993	22'000	24'997	0.0795	-

Few active sets!

Terminates fast.

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nor	mal distr	ibution	Uniform distribution					
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$
Low-Complexity										
case3_lmbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	1.0
case1888_rte	3	6	13'259	0.0	1.0	3	10	13'259	0.0	1.0
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926
case24_ieee_rts	10	1456	18'209	1.0	1.0	11	64	13'259	0.0047	0.9941
High-Complexity	_									
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	-
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901
case240_pserc	2993	22'000	24'997	0.0795	-	2993	22'000	24'997	0.0795	-

Few active sets!

Terminates fast.

High probability of optimal solutions!

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nor	mal distr	ibution	Uniform distribution					
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$
Low-Complexity										
case3_lmbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	1.0
case1888_rte	3	6	13'259	0.0	1.0	3	10	13'259	0.0	1.0
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926
case24_ieee_rts	10	1456	18'209	1.0	1.0	11	64	13'259	0.0047	0.9941
High-Complexity	_						_			
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901
case240_pserc	2993	22'000	24'997	0.0795	-	2993	22'000	24'997	0.0795	-

Few active sets! Terminates fast. High probability of optimal solutions!

Not always: Large number of active sets

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nor	mal distr	ibution	Uniform distribution					
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$
Low-Complexity										
case3_lmbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	1.0
case1888_rte	3	6	13'259	0.0	1.0	3	10	13'259	0.0	1.0
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926
case24_ieee_rts	10	1456	18'209	1.0	1.0	11	64	13'259	0.0047	0.9941
High-Complexity	_									
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901
case240_pserc	2993	22'000	24'997	0.0795	-	2993	22'000	24'997	0.0795	-

Terminates fast. High probability of optimal solutions!

Few active sets!

Not always: Large number of active sets Slow to terminate.

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nor	mal distr	ibution		Uniform distribution					
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	
Low-Complexity											
case3_lmbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0	
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0	
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0	
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	1.0	
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998	
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984	
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	1.0	
case1888_rte	3	6	13'259	0.0	1.0	3	10	13'259	0.0	1.0	
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901	
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926	
case24_ieee_rts	10	1456	18'209	1.0	1.0	11	64	13'259	0.0047	0.9941	
High-Complexity	_						_				
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	3 (
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897	
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901	
case240_pserc	2993	22'000	24'997	0.0795	÷	2993	22'000	24'997	0.0795	23	

Terminates fast. High probability of optimal solutions!

Few active sets!

Not always: Large number of active sets Slow to terminate. Lower probability of optimal solutions!

Practical Implications for Power Systems Operation

IEEE 300 bus system with normally distributed load

Increasing parameter uncertainty = Increasing number of optimal active sets
IEEE 300 bus system with normally distributed load

Increasing parameter uncertainty = Increasing number of optimal active sets

«Power systems operation becomes more unpreditable and complex with increasing uncertainty»

General perception among system operators

IEEE 300 bus system with normally distributed load

Increasing parameter uncertainty = Increasing number of optimal active sets

«Power systems operation becomes more unpreditable and complex with increasing uncertainty»

General perception among system operators

What does this imply for system risk? Price stability?

Summary

#1 – Leverage pre-existing knowledge (mathematical model) improves learning outcomes

2 – Using active sets as an intermediate step is useful

- encodes all information about optimal solution
- finite (and typically low?) number of active sets

3 – Streaming algorithm establishes practicability of the task

- Probabilistic performance guarantees
- Guaranteed to terminate
- Guaranteed to terminate fast for nice problems

Quite general strategy

- Streaming algorithm can work for very general problems: Non-convex AC OPF, mixed integer problems ...
- Disclaimer: Application must be such that the number of active sets is small.
- Alternative strategy: Learn possible active constraints instead of active sets

Outlook

Classification!

[Deka and Misra, 2019]

Outlook

Efficient solution? Active set solver, local approximation, ... Preliminary results for the (non-linear, non-convex) AC Optimal Power Flow Problem

AC Optimal Power Flow

Max. undiscovered: $\alpha = 0.1$, Max. difference: $\epsilon = 0.05$

RTE 1951 bus test case

(did not terminate)

PSERC 200 bus test case

AC Optimal Power Flow

Max. undiscovered: $\alpha = 0.1$, Max. difference: $\epsilon = 0.05$

RTE 1951 bus test case

PSERC 200 bus test case

AC Optimal Power Flow

Max. undiscovered: $\alpha = 0.1$, Max. difference: $\epsilon = 0.05$

RTE 1951 bus test case

Termination: $R_{M,W} \leq 0.05$

PSERC 200 bus test case

Only 164 of 5192 transmission line constraints ever active

Only 28 of 490 transmission line constraints ever active

1. Learning solutions to (power system) optimization problems through optimal active sets

2. Identifying potentially active constraints

Identifying potentially active constraints

Daniel K. Molzahn Georgia Tech

Dan Molzahn and Line Roald, «Grid-Aware versus Grid-Agnostic Distribution System Control: A Method for Certifying Engineering Constraint Satisfaction», Hawaii International Conference on System Sciences (HICSS), 2019

Line Roald and Dan Molzahn, «Implied Constraint Satisfaction in Power System Optimization: The Impacts of Load Variations», available online: https://arxiv.org/abs/1904.01757

Optimal Power Flow

$$\min_{P_G(\omega)} \sum_{i \in \mathcal{G}} \left(c_{2,i} p_{G,i}(\omega)^2 + c_{1,i} p_{G,i}(\omega) \right)$$

s.t.

 $f(\theta(\omega), v(\omega), p(\omega), q(\omega)) = 0,$

$$p_{G,g}^{\min} \le p_{G,g}(\omega) \le p_{G,g}^{\max}, \ g \in \mathcal{G}$$
$$q_{G,g}^{\min} \le q_{G,g}(\omega) \le q_{G,g}^{\max}, \ g \in \mathcal{G}$$

$$v_i^{min} \le v_i(\omega) \le v_i^{max}, \quad i \in \mathcal{B}$$

 $i_{L,j}(\omega) \leq i_{L,j}^{max}, \quad j \in \mathcal{L}$

Before, we learned constraints that are *likely* to be active

Feasible set in the direction of the cost function

Now we want to understand which constraints can *possibly* be active!

The full **feasible set**

Optimization-based constraint screening

Main idea: Minimize/maximize the value of the constraints!

min $v_i / \max v_i$

Minimize/maximize voltage, currents ...

Non-Linear AC Power Flow

s.t.

 $f(\theta, \nu, p, q) = 0,$

 $p_{G,g}^{min} \leq p_{G,g} \leq p_{G,g}^{max}, g \in \mathcal{G}$ $q_{G,g}^{min} \leq q_{G,g} \leq q_{G,g}^{max}, g \in \mathcal{G}$

 $v_i^{min} \leq v_i \leq v_i^{max}, \quad i \in \mathcal{B}$

 $s_{L,j}(\theta, \nu, p, q) \leq s_{L,j}^{max}, j \in \mathcal{L}$

Generation

constraints

Voltage constraints

Transmission constraints

If $\max v_i \le v_i^{max}$ and $\min v_i \ge v_i^{min}$

Voltage will never go out of bounds!

Optimization-based constraint screening

Main idea: Minimize/maximize the value of the constraints!

min v_i / max v_i

s.t.

 $f(\theta, v, p, q) = 0,$

 $p_{G,g}^{min} \le p_{G,g} \le p_{G,g}^{max}, g \in \mathcal{G}$ $q_{G,g}^{min} \le q_{G,g} \le q_{G,g}^{max}, g \in \mathcal{G}$

 $v_i^{min} \le v_i \le v_i^{max}, \quad i \in \mathcal{B}$

 $s_{L,j}(\theta, v, p, q) \leq s_{L,j}^{max}, j \in \mathcal{L}$

Minimize/maximize voltage, currents …

Non-Linear AC Power Flow

Generation constraints

Voltage constraints

Transmission constraints

- Connections to optimizationbased bound tightening [C. Coffrin, Hijazi, and Van Hentenryck, 2015]
- Results for DC OPF [Ardakani and F. Bouffard, 2013, 2015] [Madani, Lavaei, and Baldick, 2017]
- Our interest:
 - Large ranges of load
 - AC OPF (distribution grids)

Distribution grids – AC Optimal Power Flow

- Consider ranges of load variations (not controllable by the system operator)
- Voltage constraints only on buses we monitor/control

min v_i / max v_i

s.t.

 $f(\theta, v, p, q) = 0,$

 $p_{D,i}^{min} \leq p_{D,i} \leq p_{D,i}^{max}, \ i \in N$ $q_{D,i}^{min} \leq q_{D,i} \leq q_{D,i}^{max}, \ i \in N$

 $v_i^{min} \le v_i \le v_i^{max}, \quad i \in C$

Minimize/maximize voltage

Load variations

Voltage constraints on nodes with measurements/control Valid bounds: Use convex relaxation.

QC relaxation with bound tightening

[Coffrin, Hijazi and Van Hentenryck, 2016 & 2017]

Challenging:

- non-standard objective (relaxation is weak)
- low-voltage solutions

...

IEEE 123 bus system – single-phase equivalent

[Bolognani and Zampieri, 2016]

Add more controllable nodes, and tighten the voltage limits!

Added controllability and tighter voltage range on Bus 32

Added controllability and tighter voltage range on Bus 11

Redundant constraints in DC optimal power flow

How many constraints can ever be active in DC optimal power flow?

	$-P_L^{max} \le M(P_G - \mathbf{P}_D) \le P_L^{max},$	Transmission constraints	Often redundant
	$0 \leq P_G \leq P_G^{max}$,	Generation constraints	Non-redundant
s.t.	$\sum_{i=1}^{N_B} \left(P_{G(i)} - \boldsymbol{P}_{\boldsymbol{D}(i)} \right) = 0$	Power balance	Non-redundant
\min_{P_G}	$C_G^T P_G$	Minimize/maximize constraints	

Allow power demand $P_{D(i)}$ to vary $\pm X$ % where $0 \le X \le 100$ Relax generator lower bounds to **0**

Results on PGLib-OPF test cases

Results on standard test cases

Optimization-based constraint screening

- Main idea:
 - Solve optimization problems that minimize/maximize the value of the constraints (If the problems are hard to solve, use relaxations to obtain valid lower/upper bounds!)
 - Identify constraints that cannot be violated -> redundant constraints
 - Identify constraints that can be violated -> potentially important constraints
- Works really well for power flow optimization!
- We can use this to
 - (1) identify constraints that need to be monitored/controlled
 - (2) reduce the number of considered constraints
 - (3) ...

THANK YOU!

Line Roald, roald@wisc.edu

Summary of streaming algorithm results

1. Guaranteed to terminate, no need to decide on the number of M samples apriori Definition of the window size W and termination criterion

Theorem 1 and 2 [Misra, Roald, Ng, 2018]: If the window size W(M) is defined as $W = \frac{2\gamma}{\epsilon^2} \max\{\log M, \log \underline{M}\}$ with $\underline{M} = 1 + \left(\frac{\gamma}{\delta(\gamma-1)}\right)^{\frac{1}{\gamma-1}}$ Then $\mathbb{P}(\pi(U_M) - R_{M,W} \le \epsilon \quad \forall M > 1) \le 1 - \delta$

- difference between true and empirical probability of unobserved active sets
- δ confidence level
- γ hyperparameter > 1

2. Guaranteed to terminate fast for *benign* systems

Theorem 3 [Misra, Roald and Ng] If a (small) number of relevant active sets K_0 that contains more than $1 - \alpha_0$ probability mass, then with probability at least $1 - \delta - \delta_0$ the algorithm terminates in less iterations than

$$M = \frac{1}{\alpha - \alpha_0} \left(K_0 \log 2 + \log \frac{1}{\delta_0} \right)$$