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What is PAISim?
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What is PAISim?
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Because

It is Optimized for speed

Why Do We Need Another Simulator?
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• Power generation is moving towards more greener renewables

>10 GW wind power plants

Motivation for a New Power System Simulation Tool
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Motivation for a New Power System Simulation Tool
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• Power generation is moving towards more greener renewables

• Grid-tied renewable           Nonlinear Inverter based Controllers
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Motivation for a New Power System Simulation Tool

• Power generation is moving towards more greener renewables

• Grid-tied renewable           Nonlinear Controllers like Phase Locked Loop (PLL) 
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• PLL converter controler         Instantaneous grid voltage phase angle and frequency

• Grid faults   PLL unsynchronized   Grid instability

• Electromagnetic Transients (EMT) Simulations for analysing Grid Instabilities

– Time consuming  even for a power plant

– Often only done for a few predefined scenarios
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Motivation for a New Power System Simulation Tool
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Objective: AI for Power System Stability

• Develop ML models to predict power system stability 

with both conventional and inverter-based resources

• Why Use Machine Learning?

– ML models can be 100 to 1,000 times faster than 

conventional ones with good accuracy

– ML models can quickly screen many scenarios, 

focusing on critical ones for EMT simulations
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Requirements:

1. Capture Power System Component Dynamics:

➢ Conventional power system components

➢ Inverter-based resources and grid components

2. Capture component interaction

➢ Overall power grid behaviour
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Making AI Work for Power System Stability
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Physics Informed Machine Learning

• Traditional NN Training: Relies heavily on large datasets with 

labeled data

• Challenges:

– Is there sufficient data available?

– Does the data encompass all relevant scenarios?

– How long will it take to create a robust dataset?

• Learn from the physics  Physics-Informed Machine Learning
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Physics Informed Machine 

Learning

Limitations of Neural Network 

Physics
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Less Data, More Physics: PINN for Power System

Trustworthy Machine Learning for Power System Applications 12

• Assume: 

• Training:

generate data set 𝑦𝑖 = 𝑔 𝑥𝑖 ,

𝑦 = 𝑔 𝑥 ,
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PINN for Power 
System Applications
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Modelling Power System Dynamics

Example: Single Machine Generator
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Physics-Informed Neural Networks for Power Systems
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PINNs can Predict Trajectories of Multi-machine

System
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Why PINNs !

• PINNs Shift Learning Paradigm: Transition from 

supervised to nearly unsupervised learning

• Potential Impact: PINNs could eventually replace 

differential-algebraic equation solvers

• Power System Application: Ultra-fast screening of 

critical contingencies

• Capability: Direct estimation of rotor angle at any time 

instant
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Requirements:

1. Capture Power System Component Dynamics:

➢ Conventional power system components

➢ Inverter-based resources and grid components

2. Capture component interaction

➢ Overall power grid behavior
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Making AI Work for Power System Stability
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PINN for Inverter based 
Generators
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Inverter based Generators

Wind Generator GridDC-AC Inverter
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Reduced order model for Transient stability 

assessment of Inverter based Generators with PLL
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• Grid fault        DC chopper is activated         DC voltage is assume to be study
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𝜕𝑥

𝜕𝑡
= 𝑓(𝑥, 𝑢)

Dowlatabadi, M. K. B., Ghosh, S., Kocewiak, L. ,& Yang, G. (2021). Transient stability assessment 
of Type-4 Wind Turbines based on an Improved reduced order model.

Reduced Order Model for Transient Stability 

Assessment of Inverter based Generators with PLL
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Proposed Physics-Informed Neural Network
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Results: Predicting Region of Attraction
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• ROA           System states from which all the trajectories converge to a stable equilibrium point 

• ROA for different grid 𝐿𝑔and 𝑟𝐿𝑔 . Assuming ൗ
𝐿𝑔

𝑟𝐿𝑔
is fixed

• Both 𝐿𝑔and 𝑟𝐿𝑔 are increase by a factor of 𝛼

• PINN is trained with 𝛼 as a parameter
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250 K different starting points 

t(s) t(s)

Results: Predicting Region of Attraction

• ROA           System states from which all the trajectories converge to a stable equilibrium point 

• ROA for different grid 𝐿𝑔and 𝑟𝐿𝑔 . Assuming ൗ
𝐿𝑔

𝑟𝐿𝑔
is fixed

• Both 𝐿𝑔and 𝑟𝐿𝑔 are increase by a factor of 𝛼

• PINN is trained with 𝛼 as a parameter
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Time taken – 250 K Starting points

• ODE - 250 K starting points- 2 hrs 15 min in DTU HPC using RK solver python

• PINN

– Data collection – only for the first 100 ms (~100 K starting points) < 30 min  

– Training – 10 min using DTU GPU 

• 30 to 60 min for testing different hyperparameters

– Predicting for 250 K starting points      predict δ and ω after fault is cleared for 1 sec      <10 min

– Total < 2 hrs
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PINN Training and Testing

RK Solver for ODE

DTU HPC DTU GPU Laptop

DTU HPC
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Region of Attraction with 5 M points
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5 Million Starting points

PINN < 30 min

ODE Solution not available

Would take DTU HPC > 2 days
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So..

PINN

→Access numerous scenarios 

→identify critical case 

→access using EMT simulation

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics 28



Technical University of Denmark

Requirements:

1. Capture Power System Component Dynamics:

➢ Conventional power system components

➢ Inverter-based resources and grid components

2. Capture component interaction

➢ Overall power grid behaviour

Curse of dimensionality 

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics 29

Making AI Work for Power System Stability
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Challenges of PINN in Power System

What happens when the setup changes?

Retrain NN every time

– Increases the training time

– Difficult to reach critical time

Incorporate all the variations

– Dimensionality of the learning problem 

increases

– More difficult and expansive training
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PAISim – Connecting 
PINNs or AI models to 
Grid
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Dynamical Systems Coupled by Power Transfer

Components inject currents ҧ𝑖𝑖
𝐶 (𝒙𝑖, ҧ𝑣𝑖)

➢ Component dynamics 𝑓𝑖(𝑡, 𝒙𝑖, ҧ𝑣𝑖)

➢ Depend on local voltage ҧ𝑣𝑖

Network currents ҧ𝑖𝑖
𝑁( ҧ𝑣𝑖)

➢ Depend on system structure

Need to satisfy current balance ҧ𝑖𝑖
𝐶 = ҧ𝑖𝑖

𝑁

Functions of time: 𝒙𝑖 𝑡 , ҧ𝑣𝑖 𝑡 , ҧ𝑖𝑖
𝐶 𝑡 , ҧ𝑖𝑖

𝑁 𝑡
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PAISim Concept

Assume voltage evolution

➢Parametrise with Ξi
➢One evolution per bus ෠ҧ𝑣𝑖(𝑡, Ξi)

Solve component dynamics with PINNs

➢𝒙𝑖 = 𝑃𝐼𝑁𝑁𝑖(𝑡, 𝑥0, Ξ𝑖)

➢One 𝑃𝐼𝑁𝑁𝑖 per component

Approximate current injections ෡ҧ𝑖𝑖
𝐶 , ෡ҧ𝑖𝑖

𝑁

➢Components ෡ҧ𝑖𝑖
𝐶(𝑡, 𝑥0, Ξ𝑖)

➢Network ෡ҧ𝑖𝑖
𝑁(𝑡, Ξ𝑖)

Task: Match current balance ෡ҧ𝑖𝑖
𝐶 = ෡ҧ𝑖𝑖

𝑁
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Find parameters that minimize error in current 

balance

Provide initial guess for Ξ

Loop until convergence:

1. Evaluate መҧ𝑖𝐶 ො𝑥, Ξ ,
𝜕

𝜕Ξ
መҧ𝑖𝐶

2. Evaluate መ ҧ𝑖𝑁 Ξ ,
𝜕

𝜕Ξ
መ ҧ𝑖𝑁

3. Compute current balance error
መ ҧ𝑖𝐶 − መ ҧ𝑖𝑁

4. Reduce error by adjusting Ξ
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PAISim allows for larger time steps
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The error for larger time steps remains small

Less time steps needed -> potential acceleration
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Requirements:

1. Capture Power System Component Dynamics:

➢ Conventional power system components

➢ Inverter-based resources and grid components

2. Capture component interaction

➢ Overall power grid behaviour
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Making AI Work for Power System Stability
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End Goal
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PAISim – Different AI Modules

• AI/ODE Modules: Pre-built libraries for various power system components 

• GPU-Accelerated Solver: Simultaneously handles multiple N-1 scenarios with fast root-

finding algorithms
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Physics-Informed Artificial 
Intelligence Simulator (PAISim)
for Power System Applications

Thank You

Rahul Nellikkath
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PINNSim

Code

PINN for PLL 

Paper
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