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What is PAISIM?
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Why Do We Need Another Simulator?
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Motivation for a New Power System Simulation Tool

« Power generation is moving towards more greener renewables

o 1 = ?‘T
North Sea Energy Islalﬁa

\

Artist’s
impression

>10 GW wind power plants

Technical University of Denmark A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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Motivation for a New Power System Simulation Tool

« Power generation is moving towards more greener renewables

* Grid-tied renewable » Nonlinear Inverter based Controllers
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Motivation for a New Power System Simulation Tool

« Power generation is moving towards more greener renewables

» Grid-tied renewable » Nonlinear Controllers like Phase Locked Loop (PLL)
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Motivation for a New Power System Simulation Tool

* PLL converter controler » Instantaneous grid voltage phase angle and frequency
» Grid faults mp PLL unsynchronized » Grid instability
» Electromagnetic Transients (EMT) Simulations for analysing Grid Instabilities

— Time consuming even for a power plant

— Often only done for a few predefined scenarios

SILEN

PSCAD 3

MIDDLE EAST

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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Objective: Al for Power System Stability

* Develop ML models to predict power system stability
with both conventional and inverter-based resources

* Why Use Machine Learning?
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— ML models can be 100 to 1,000 times faster than
conventional ones with good accuracy
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— ML models can quickly screen many scenarios,
focusing on critical ones for EMT simulations

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics

Technical University of Denmark
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Making Al Work for Power System Stability

Requirements:

1. Capture Power System Component Dynamics:
» Conventional power system components
> Inverter-based resources and grid components
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2. Capture component interaction
» Overall power grid behaviour

Technical University of Denmark A Physics-Informed Neural-Network-based Simulator for Power System Dynamics



=
—
—

i

Phngr adsoimd con e UMalcNigtevbdarning

« Traditional NN Training: Relies heavily on large datasets with Neural Network
labeled data 2 2 B - ZL
72 72 - E— 73
« Challenges: i ! i i
- - G 7
— |Is there sufficient data available?

— Does the data encompass all relevant scenarios?
— How long will it take to create a robust dataset? Q

« Learn from the physics = Physics-Informed Machine Learning

Physics Informed Machine
Learning

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics

Technical University of Denmark
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Less Data, More Physics: PINN for Power System

Neural Network

« Assume:
Z z zj ----- zi
y = g(x); » X b z2 72— - - 72 ?
» Training: ™ o — ot

generate data set y; = g(x;),

PINN Training Process

x & z 9 € y ® MAE L

NN
gx) —y Ly,
Train iteration

Wi, bi < wi, bi + AV (A(] Ly + Ag Lg)

Technical University of Denmark Trustworthy Machine Learning for Power System Applications
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Modelling Power System Dynamics

Example: Single Machine Generator

ngw
E'V ., .
% (P — DAw — _)?d sin (0 — !9))

y d | o |

Trajectory: Temporal state evolution

» Time t

t
x(t)=xo+ [ f(r.z;u.N)dT » State o
Jto ——

» Control input u
» Parameters A\

» Nonlinear system with 2 states

Technical University of Denmark A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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Physics-Informed Neural Networks for Power Systems

Loss function from

PINN Loss function

data
o (mr > B-o1 [ LS e
, LeNs ¢ il eN,
8§ = NN(x,,t,u)
Neural Network
Auto Differential ~ 3% = 9%
8 = —, 8 — —
ot ot

Swing equation

f(8)= M5 + D38 +Asin 8 — u

o [rad)

Exact — — —-Predicted

P=0.17 [p.u.]

P =0.18 [p.u.]
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A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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PINNs can Predict Trajectories of Multi-machine
System

Trajectories of 24 variables (3 shown)

@ Time [s]

» Interacting dynamical systems

» Coupled by power exchange

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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Why PINNSs !

* PINNs Shift Learning Paradigm: Transition from

supervised to nearly unsupervised learning L0t L|e
: hd o . :
« Potential Impact: PINNs could eventually replace — 10 _® | o  WFixedstep size
. © © o ¢ o ©
differential-algebraic equation solvers £ 07y, : Variable step size
= L ]e
« Power System Application: Ultra-fast screening of m 107 PINN
.. . . 103
critical contingencies PR e E RS R =
1072 1071 10°

» Capability: Direct estimation of rotor angle at any time

Prediction time [s]

Instant

Technical University of Denmark A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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Making Al Work for Power System Stability

Requirements:

1. Capture Power System Component Dynamics:
» Conventional power system components
> Inverter-based resources and grid components

A 7
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2. Capture component interaction
» Overall power grid behavior

Technical University of Denmark A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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PINN for Inverter based
Generators
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Inverter based Generators

Wind Generator DC-AC Inverter Grid
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Technical University of Denmark A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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Reduced order model for Transient stability
assessment of Inverter based Generators with PLL

» Grid fault =+ DC chopper is activated == DC voltage is assume to be study

— Vyc _J(K

abc Rf
= ~ Xy
PWM
abC Pl .®4 ...................... ld
i, :
dq PI X+ ig

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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Reduced Order Model for Transient Stability
Assessment of Inverter based Generators with PLL

o S v,
’ J 1'.-3(—7 rLg Lg\ . — N _- -
j — m>“® J A 2
e\ J - | — |1 ’ ’ /.-
\ i PLL -’): '\___G?‘_fd . X2 H(T;n - Tg _ D '}‘2)
\ v - :
TG O N / where, x; = ¢ and x» = 0, and
e — -7 Isolated
T _('5} networks

0x B
= =W

0 = (Hﬂ'f —_ HEJ

Dowlatabadi, M. K. B., Ghosh, S., Kocewiak, L. ,& Yang, G. (2021). Transient stability assessment
of Type-4 Wind Turbines based on an Improved reduced order model.

Technical University of Denmark A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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Proposed Physics-Informed Neural Network

1 . . .
min LL+ LY + L
A Z; 3 w.b |Nt| Z X dt f
t iENt
Xo 757 V7 e X,
u : I A
™ 2 2 X =Xy + t*NN(t,x,u)
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t ——
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Trustworthy Machine Learning for Power System Applications

Technical University of Denmark
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Results: Predicting Region of Attraction

ROA » System states from which all the trajectories converge to a stable equilibrium point

ROA for different grid Lyand Ty Assuming Lg/rLg is fixed

Both L,and 1, are increase by a factor of a
g

PINN is trained with a as a parameter
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Results: Predicting Region of Attraction

ROA » System states from which all the trajectories converge to a stable equilibrium point

ROA for different grid Lyand TLy- Assuming Lg/rLg is fixed

Both L,and 1, are increase by a factor of a
)

PINN is trained with « as a parameter

ROA with time from ODE fora = 0.1 60 ROA with time from PINN fora = 0.1
0.90 0.90
40
0.75 0.75
20
0.60 0.60
3 0
0.45 (s) 0-45 t(s)
0.30 =207 0.30
0.15 —40 7 0.15
0.00 —60 0.00

-3 -2 -1 0 1 2 3

° 250 K different starting points 0

Technical University of Denmark A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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Time taken — 250 K Starting points

* ODE - 250 K starting points- 2 hrs 15 min in DTU HPC using RK solver python
RK Solver for ODE

DTU HPC

PINN Training and Testing

DTU HPC DTU GPU Laptop

 PINN
— Data collection — only for the first 100 ms (~100 K starting points) < 30 min
— Training — 10 min using DTU GPU
» 30 to 60 min for testing different hyperparameters
— Predicting for 250 K starting points = predict 6 and w after fault is cleared for 1 sec = <10 min
— Total < 2 hrs

Technical University of Denmark A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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Region of Attraction with 5 M points

ROA with time from PINN for a = 0.1

Technical University of Denmark

0.96

0.84

0.72

0.60

0.48

0.36

0.24

0.12

0.00

5 Million Starting points

PINN < 30 min

ODE Solution not available

Would take DTU HPC > 2 days

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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So..

\ PINN
Total cost —>Access numerous scenarios
Ctotal identify critical case
—>access using EMT simulation
PINNs
Cup-front O

i
1

Neritical 1 Evaluations

Technical University of Denmark A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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Making Al Work for Power System Stability

Requirements:

1. Capture Power System Component Dynamics:
» Conventional power system components
> Inverter-based resources and grid components
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2. Capture component interaction
» Overall power grid behaviour

Curse of dimensionality

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics

Technical University of Denmark
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Challenges of PINN in Power System

What happens when the setup changes?

|| ]
~ ~ Retrain NN every time
SN 1S

— Increases the training time
— Difficult to reach critical time

Incorporate all the variations

— Dimensionality of the learning problem
increases

@ — More difficult and expansive training

Technical University of Denmark A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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PAISIMm — Connecting
PINNs or Al models to
Grid
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Dynamical Systems Coupled by Power Transfer

Components inject currents ¢ (x;, 7;)

_} .
| | @ > Component dynamics f;(t, x;, 7;)
» Depend on local voltage v;
Network currents ¥ (7;)
-N » Depend on system structure
AR

2NO)

Need to satisfy current balance if = I{-"

Functions of time: x;(t), 7;(t), 15 (t), 1 (¢)

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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PAISIm Concept

L

_““6 v1(t, Eq)

x1 = PINN (¢, o, 1, El)

Assume voltage evolution
»Parametrise with &;
>One evolution per bus 7;(t, ;)
Solve component dynamics with PINNSs
>x; = PINN;(t, xo, E;)
»One PINN; per component

Approximate current injections ¢, 1

»>Components ¢ (¢, xo, £;)
>Network ¥ (t, Z;)

i\

Task: Match current balance ff =1

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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Find parameters that minimize error in current

balance
Provide initial guess for =
—>
i @ Loop until convergence:
1. Evaluate 1“(%, %), %f‘:
2. Evaluate 1V (%), %TN
3. Compute current balance error
=C N
. Al
E{\T T ~ 4. Reduce error by adjusting =
b —— u1(t, Er)

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics 34
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PAISIm allows for larger time steps

Aw; [Hz]

Time t
The error for larger time steps remains small

Less time steps needed -> potential acceleration

Technical University of Denmark

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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Making Al Work for Power System Stability

Requirements:

1. Capture Power System Component Dynamics:
» Conventional power system components
> Inverter-based resources and grid components
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2. Capture component interaction
» Overall power grid behaviour

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics

Technical University of Denmark
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End Goal
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PAISIm — Different Al Modules

« AI/ODE Modules: Pre-built libraries for various power system components

 GPU-Accelerated Solver: Simultaneously handles multiple N-1 scenarios with fast root-
finding algorithms

Technical University of Denmark

Al Models for Line

Al

D

Models

| Models

For WT

Al
Models
For EV

For PV

Models
For SG

A Physics-Informed Neural-Network-based Simulator for Power System Dynamics
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