
c 

Non-cooperative Games to Control Learned Inverter 
Dynamics of Distributed Energy Resources 

Paul Serna-Torrea,b , Vishal Shenoyc , Jorge I. Povedac , David 
Schoenwaldd , and Patricia Hidalgo-Gonzaleza,b,c 

a Department of Mechanical and Aerospace Engineering, University of California, San Diego 
b Center for Energy Research, University of California, San Diego 

Department of Electrical and Computer Engineering, University of California, San Diego 
d Sandia National Laboratories, New Mexico 

Sept 4, 2024 

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 1 / 49 University of California San Diego 



Table of Contents 

1 

2 

3 

4 

5 

6 

7 

Introduction 

Contributions 

Problem formulation 

Control scheme design 

Simulations and Results 

Conclusions and Future Directions 

Supplemental information 

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 2 / 49 University of California San Diego 



Introduction 

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 3 / 49 University of California San Diego 



Microgrids and DERs’ role in future energy systems 

Resiliency to extreme weather events1 

Single microgrid: provide access to power 
Potential value of networked microgrids 

Support the transmission network 
Wholesale electricity market and FERC 2222 
Ancillary services (freq. reg., spinning reserves, capacity, etc.) 

1 
Image source: http://www.snopes.com/ 
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Coordination of DERs in a microgrid 

DERs can work as a Virtual Power Plant (VPP) to provide services to 
support the upper-level grid. 

Figure: A grid-connected microgrid with DERs 
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Previous work: DER control for regulation services 

Work using optimization techniques: 

Dall’Anese et al.2 propose an online algorithm for a distribution grid 
to solve its ACOPF while satisfying an output power reference 

Behi et al.3 develop a bidding strategy for a VPP to maximize profts 
from selling load-following ancillary services, subject to customer 
preferences and hourly operational constraints 

2Emiliano Dall’Anese et al. “Optimal Regulation of Virtual Power Plants”. In: IEEE 
Transactions on Power Systems 33.2 (2018), pp. 1868–1881. 

3Behnaz Behi et al. “A Robust Participation in the Load Following Ancillary Service 
and Energy Markets for a Virtual Power Plant in Western Australia”. In: Energies 16.7 
(2023). issn: 1996-1073. url: https://www.mdpi.com/1996-1073/16/7/3054. 
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Previous work: DER control for regulation services 

Benefts of optimization-based methods to control DERs: 

✓ online implementation 

✓ fast computation 

However, they may disregard: 

× Selfsh DERs, i.e., they seek to optimize their individual economic 
interests 
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Previous work: DER control for regulation services 

Work using non-cooperative game theory: 

Mylvaganam et al.4 propose a control scheme to steer the state of a 
microgrid to nominal operating conditions by controlling the input 
impedance of storage units 

Zhang et al.5 develop a control scheme to coordinate DERs in an 
islanded MG to bring frequency deviations back to zero 

4T. Mylvaganam and A. Astolf. “Control of microgrids using a diferential game 
theoretic framework”. In: 2015 54th IEEE Conference on Decision and Control (CDC). 
2015, pp. 5839–5844. doi: 10.1109/CDC.2015.7403137. 

5Jing Zhang et al. “Coordination control of multiple micro sources in islanded 
microgrid based on diferential games theory”. In: International Journal of Electrical 
Power & Energy Systems 97 (2018), pp. 11–16. issn: 0142-0615. doi: 
https://doi.org/10.1016/j.ijepes.2017.10.028. 
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Research gap 
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Research gap 

Past work does not: 
consider nonlinear dynamics of inverters, 
use learned state-space models that represent the dynamics of 
inverters, and 
implement the resulting controllers in high-fdelity models of inverters. 

Figure: Inverters in a microgrid. 
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Contributions 

We propose a non-cooperative game framework that incorporates 
inverter dynamics 

We learn a state-space representation of the inverter dynamics 

Our control scheme enables a microgrid to provide regulation services 
to support the upper-level grid 

We show the cost efectiveness and time-domain performance of our 
proposed control scheme compared with droop control and 
proportional-integral (PI) control. 
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Problem we want to solve 

Figure: Need for controlling DERs in support to upper-level grid operation. 
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Control scheme design 

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 15 / 49 University of California San Diego 



Description of our control scheme (cont.) 

Figure: Control scheme considerations: (i) DERs are selfsh, (ii) grid-following inverters, 
(iii) load perturbations, (iv) pmicrogrid → preq 
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Modeling of inverters 

Challenges: 

The state-space representation of each DER is needed 
Deriving exact system dynamics for each DER may come with 
difculties: 

Privacy concerns 
Multiple control loops with high computational complexity 
Scalability issues for high number of inverters 
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Modeling of inverters 

Solution we propose: 

Learned inverter dynamics 

The dynamics of each inverter are modeled through System Identif-
cation (SI). This method identifes the transfer function of a dynam-
ical system from observed input-output data. 
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Learned inverter dynamics 

Figure: System Identifcation extracts dynamics for an inverter-interfaced DER 

Using System Identifcation, the matrices Ai , Bi , Ci and Di of the 
state-space representation of DER i is 

ẋi = Ai xi + Bi ui (1) 

yi = Ci xi , (2) 

where Ai ∈ Rd×d , Bi ∈ Rd×1 , Ci ∈ R1×d 
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Cluster of DERs as a Virtual Power Plant (VPP) 

The state-space representation of the VPP that groups “N” DERs is         
ẋ1 A1 x1 B1 u1  . . .  =  . . . 

 +  . . .
 . 

xN 

. . . (3). . 
ẋN AN BN uN 

x1 
. . . 
xN 

 
�� C1 . . . CN (4)y = , 

In compact form, 

ẋ = Ax + Bu (5) 

y = Cx , (6) 

� 
x1 

�⊤ ∈ RN·dState of the VPP: x = . . . xN 

Control action of DER i: ui 
Power output of the VPP: y 
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Modeling of Regulation service 

Considerations: 

Power reference of the regulation service: preq(t) ∈ R, 
MG’s power delivered to the upper grid y(t) − d(t) → preq(t), 
To comply with the regulation service, we use a compensator (i.e., 
achieving zero steady-state error) with state w, output v, matrices H, 
G and D. 

Using the deviation of the states, the resulting augmented dynamics for 
the VPP is: " # � � 

xė xe � �
¯ ¯ ¯ = A + B1 ... BN ue (7)

ẇe we � � � � ey ev 
¯= C 

ex ew 
, (8) 

� 
A¯where A = −GC 

� 
0 �

¯, Bi = 0 
H 

... Bi ... 

��⊤ C¯0 , and C = 
0 

� 
0 
. 

D 
Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 21 / 49 University of California San Diego 



Modeling of Regulation service 

Considerations: 

Power reference of the regulation service: preq(t) ∈ R, 
MG’s power delivered to the upper grid y(t) − d(t) → preq(t), 
To comply with the regulation service, we use a compensator (i.e., 
achieving zero steady-state error) with state w, output v, matrices H, 
G and D. 

Using the deviation of the states, the resulting augmented dynamics for 
the VPP is: " # � � 
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Non-cooperative linear quadratic diferential game for DER 
coordination 

Each DER seeks to minimize its individual cost Ji (xe0, we0, ue) during the 
power regulation service. The cost is given by Z ∞ 

(� �⊤ � � ) 
xe xe 

Ji (xe0, we0, ue) = Qi + ue⊤Ri uei dt, (9)iwe wet0 

where Qi = Q⊤ ≥ 0 and Ri ≥ 0i 

Subject to: " # � � 
xė xe � �

¯ ¯ ¯ = A + B1 ... BN ue (10)
ẇe we � � � � 
ye xe¯ = C , (11)
ve we 
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Nash equilibrium strategy for DERs 

Each DER employs a linear feedback strategy given by � �� � xe 
uei = Ki Fi , (12)

we 

We determine the set of admissible strategies {u1, . . . , uN } of the form 
(12) using the concept of Nash equilibrium 

∗ ∗ ∗ ∗ ∗ Ji (xe0, we0, [ue1 , ..., uei , ..., ueN ]) ≤ Ji (xe0, we0, [ue1 , ..., uei , ..., ueN ]), (13) 

for i = {1, 2, ..., N}. 
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Nash equilibrium strategy for DERs (cont.) 

� � 
∗ = −R−1 ¯ xe 

u i Bi Pi (14)i we 

for i = {1, ..., N}. 
The matrices Pi are the symmetric stabilizing solution of the coupled 
Algebraic Riccati equations: 

� N � N �X �⊤ X 
¯ ¯A − Sj Pj Pi + Pi A − Sj Pj − Pi Si Pi + Qi = 0 (15) 

j≠ i j ̸=i 

⊤¯ ¯for i = {1, ..., N}, where Si = Bi R
−1 .i Bi 

We use an iterative algorithm6 to obtain Pi . 
6Jacob Engwerda. “Algorithms for computing Nash equilibria in deterministic LQ 

games”. In: Computational Management Science 4.2 (Apr. 2007), pp. 113–140. issn: 
1619-6988. 
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Nash equilibrium strategy for DERs (cont.) 
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State estimation of DERs 

We need state variables information to calculate control action ui 
In our setup there are no state variable measurements (as they are 
internal states) 

We use Loop Transfer Recovery (LTR) to estimate the states (variant 
of the Kalman Filter) 

LTR is robust to parameter perturbations ∆Ai , ∆Bi , ∆Ci from the 
learned DER dynamics 
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Control scheme 

In summary, the state-feedback control and LTRs are placed in the MG as 
follows: 

Figure: Control scheme for a microgrid (MG) to provide power regulation service in 
support to the upper-level grid. 
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Simulations and Results 
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Validation of learned dynamics and control scheme 
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Figure: Top panel: Microgrid (MG)’s power output with learned DER models and MG’s 
power output with high-fdelity DER models. Bottom panel: MG’s load during the 
regulation service. 
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Case study 

The four scenarios correspond to 10-kV MGs with diferent numbers of 
DERs: 

1 

2 

1 PV system and 1 BESS 
1 PV system and 2 BESS 

3 3 PV systems and 3 BESS 
4 4 PV systems and 6 BESS 

Figure: MG in scenario 1 
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Comparison of the proposed control scheme against 
droop and PI control using high-fdelity dynamics 
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Benchmark of the proposed control scheme against droop 
controller and PI controller 

Individual costusing droop/PI The cost savings of DER i : Individual costuproposed 

Table: Cost savings of each DER when using our proposed control scheme for all 4 
scenarios using Sandia’s high-fdelity inverter models 

Savings DERs 
relative to: 

1 2 3 4 5 6 7 8 9 10 

Droop 28.3 34.2 

PI 1.3 1.5 

Droop 100 116 123 

PI 3.6 4.1 4.3 

Droop 209 185 204 189 196 171 

PI 9.3 8.3 9.1 8.5 8.8 7.7 

Droop 48.5 50.9 54.2 53.3 51.2 37.0 50.5 51.3 48.7 46.8 

PI 7.3 7.6 8.1 8.0 7.7 5.7 7.6 7.7 7.3 7.1 
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Individual costusing droop/PI The cost savings of DER i : Individual costuproposed 

Table: Cost savings of each DER when using our proposed control scheme for all 4 
scenarios using Sandia’s high-fdelity inverter models 

Savings DERs 
relative to: 

1 2 3 4 5 6 7 8 9 10 

Droop 28.3 34.2 

PI 1.3 1.5 

Droop 100 116 123 

PI 3.6 4.1 4.3 

Droop 209 185 204 189 196 171 

PI 9.3 8.3 9.1 8.5 8.8 7.7 

Droop 48.5 50.9 54.2 53.3 51.2 37.0 50.5 51.3 48.7 46.8 

PI 7.3 7.6 8.1 8.0 7.7 5.7 7.6 7.7 7.3 7.1 
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Benchmark in time-domain performance 
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Figure: Pros: Faster settling times, no oscillations, and zero steady-state error. Cons: 
Slightly higher overshoot. 
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Future Directions 

Diverse set of inverter manufacturers and diferent operational points 
for inverters lead to heterogeneous and time-varying dynamics. 

Challenges: how to derive or represent aggregate dynamics, 
tractability issues, etc. 

Learning inverter dynamics is a promising feld of research. 

How to guarantee stabilizing solutions for ancillary services from 
clusters of DERs considering communication delays in state 
estimation, or partial information. 

In a broader setup, where the transmission network is supported by 
the distribution network to provide frequency support, closed-loop 
stabilizing control becomes essential, and much more challenging. 

Stabilizing control techniques for large-scale time-varying systems 
becomes a necessity. Distributed and data-driven approaches are 
promising techniques to address this. 
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Thank you! 

psernatorre@ucsd.edu (Paul Serna-Torre) 
phidalgogonzalez@ucsd.edu (Patricia Hidalgo-Gonzalez) 
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John Wiley & Sons, Ltd, 2010.

Modeling of inverters 

Figure: A grid-following inverter with compensators in dq-frame able to track 
Psref , Qsref 

7 . 

7Amirnaser Yazdani and Reza Iravani. Voltage-Sourced Converters in Power Systems. 
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Learned state-space representation of DERs 

By System Identifcation, we obtain the following state-space models 

Table: DERs learned state-space representations 

Parameter PV system BESS � � � � 

A −263.094 −2.955 · 104 −258.087 −3.041 · 104 

1 0 1 0 � � � � 
1 1

B 0 0 � � � � 
C 1.589 2.945 · 104 9.712 3.039 · 104 

As system parameters may vary in practice, we intentionally introduce 
perturbations to the LTR estimator of each DER across all scenarios. 

Table: Parameter perturbations introduced to the LTR estimators 

Parameter PV system BESS � � � � 
−20 1000 −100 1000 

∆A 0 0 1 0 

∆B 

� � 
−0.1 
0 

� � 
−0.1 
0 

∆C 
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Learned voltage source inverter dynamics 

In System Identifcation (SI)8 , we provide input-output data set 

f (t) = [−y(t − 1) ... − y(t − n) u(t − 1) ... u(t − m)]⊤ . (16) 

8L. Ljung. System Identifcation: Theory for the User. Prentice Hall information and 
system sciences series. Prentice Hall PTR, 1999. isbn: 9780136566953. 
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In System Identifcation (SI)8 , we provide input-output data set 

f (t) = [−y(t − 1) ... − y(t − n) u(t − 1) ... u(t − m)]⊤ . (16) 

A candidate dynamical model is proposed, e.g., 

y(t) − a1y(t − 1) + ... + any(t − n) = b1u(t − 1) + ... + bmu(t − m), 
(17) 

ŷ(t|α) = f (t)⊤α (18) 

where: α = [a1 ... an b1 ... bn]. 

8L. Ljung. System Identifcation: Theory for the User. Prentice Hall information and 
system sciences series. Prentice Hall PTR, 1999. isbn: 9780136566953. 
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Learned voltage source inverter dynamics 

In System Identifcation (SI)8 , we provide input-output data set 

f (t) = [−y(t − 1) ... − y(t − n) u(t − 1) ... u(t − m)]⊤ . (16) 

A candidate dynamical model is proposed, e.g., 

y(t) − a1y(t − 1) + ... + any(t − n) = b1u(t − 1) + ... + bmu(t − m), 
(17) 

ŷ(t|α) = f (t)⊤α (18) 

where: α = [a1 ... an b1 ... bn]. 
The idea is to fnd α by non-linear least squares methods 

NX1 
α̂ = argmin [y(t) − ŷ(t|θ)]2 (19) 

α N 
t=1 

8L. Ljung. System Identifcation: Theory for the User. Prentice Hall information and 
system sciences series. Prentice Hall PTR, 1999. isbn: 9780136566953. 
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Modeling of Regulation service 

Considerations: 

Power reference of the regulation service: preq(t) ∈ R, 
MG’s power delivered to the upper grid y(t) − d(t) → preq(t), 

Equivalently, y(t) → r(t) = preq(t) + d(t) 
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Modeling of Regulation service 

Considerations: 

Power reference of the regulation service: preq(t) ∈ R, 
MG’s power delivered to the upper grid y(t) − d(t) → preq(t), 

Equivalently, y(t) → r(t) = preq(t) + d(t) 

To comply with the regulation service, we propose a compensator 

ẇ = Hw + Ge 

v = Dw , 

(20) 

(21) 

where w(t), v(t) ∈ R, and e(t) represents the tracking error 

e(t) := r(t) − y(t) = r(t) − Cx(t). (22) 
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Dynamics of the VPP and compensator 

We group the dynamics of the VPP and compensator in the following 
augmented state-space representation: � � � � � � � � 

ẋ A 0 x � � 0¯ ¯ = + B1 ... BN u + r (23)
ẇ −GC H w G � � � � � � 
y C 0 x 
= , (24)

v 0 D w 

State of the VPP: x ∈ RN·d 

State of the compensator: w ∈ R 

Control action for the VPP: u ∈ RN 

Power reference: r ∈ R 

Power output of the VPP: y ∈ R 

Output of the compensator: v ∈ R 
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Deviation form of the augmented system 

One issue with the augmented system is the presence of r in � � � 
ẋ A 
= 

ẇ −GC 

� � � 
0 x � 

¯+ B1H w 
... 

� �� 0
B̄N u + r 

G 
(25) � � � � � � 

y 
v 
= 

C 
0 

0 
D 

x 
w 

, (26) 
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Deviation form of the augmented system 

One issue with the augmented system is the presence of r in � � � � � � � � 
ẋ A 0 x � � 0¯ ¯ = + B1 ... BN u + r (25)
ẇ −GC H w G � � � � � � 
y C 0 x 
= , (26)

v 0 D w 

To remove r, we redefne the augmented system with deviation states9: 

ex(t) = x(t) − xss (27) ew(t) = w(t) − wss, (28) 

where xss and wss are the states achieved when the tracking error e 
becomes zero. 

9Frank L. Lewis, Draguna Vrabie, and Vassilis L. Syrmos. Optimal Control. John 
Wiley & Sons, Ltd, 2012. isbn: 9781118122631. 
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Deviation form of the augmented system (cont.) 

With the deviation states, the augmented system is: " # � �ėx ex �
¯ ¯= A + B1ėw ew 

... 
�

B̄N eu (29) � � � � ey ev 
¯= C 

ex ew 
, (30) 

� 
A¯where A = −GC 

� 
0 �

¯, Bi = 0 
H 

... Bi ... 

��⊤ C¯0 , and C = 
0 

� 
0 
. 

D 

Equivalence of tracker problem and regulator problem 

A tracker problem for the augmented system is actually equivalent 
to a regulator problem for its corresponding deviation systema . 

aFrank L. Lewis, Draguna Vrabie, and Vassilis L. Syrmos. Optimal Control. 
John Wiley & Sons, Ltd, 2012. isbn: 9781118122631. 

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 44 / 49 University of California San Diego 



Validation of the control scheme 
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Validation of the control scheme 

First, we determine the controllers for each DER following the 
non-cooperative game approach. In this step, learned state-space 
representations of the DERs are used. 
Second, in each of the 4 scenarios we do two separate 
implementations: 

the controllers in the grid with learned state-space models. 
the controllers in the grid with high-fdelity DER models (realistic case). 
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Validation of the control scheme 

First, we determine the controllers for each DER following the 
non-cooperative game approach. In this step, learned state-space 
representations of the DERs are used. 
Second, in each of the 4 scenarios we do two separate 
implementations: 

the controllers in the grid with learned state-space models. 
the controllers in the grid with high-fdelity DER models (realistic case). 

Validation of control scheme 

We compare objective functions and time-domain performance of: 
(i) grid with learned state-space models vs (ii) grid with high-fdelity 
DER models 
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Validation of control scheme (analysis of cost) 
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Figure: Optimal individual costs for each DER in case: (a) the microgrid (MG) with 
learned DER models and (b) the MG with high-fdelity DER models for all four scenarios. 
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Validation of control scheme (analysis of time-domain 
performance 
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Figure: Top panel: Microgrid (MG)’s power output with learned DER models and MG’s 
power output with high-fdelity DER models. Bottom panel: MG’s load during the 
regulation service. 
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Benchmark in time-domain performance 

With the proposed control scheme, the VPP has: (i) no oscillations, (ii) 
faster settling times, (iii) achieves almost zero steady-state error. 

Table: MG’s performance for three control schemes in all four scenarios 

Overshoot Settling time steady-state Damping
DERs Control (%) (s) error (%) (ζ) 

2 
Droop 

PI 

-65.5 

-56.02 

0.09 

0.69 

37.67 

1.2 

0.12 

0.12 

Proposed -35.67 0.42 0.01 1 

3 
Droop 

PI 

-61.36 

-17.74 

0.1 

0.61 

28.88 

0.24 

0.25 

0.13 

Proposed -35.09 0.26 0 1 

6 
Droop 

PI 

-37.37 

21.61 

0.07 

0.63 

28.96 

0.69 

0.06 

0.10 

Proposed -33.93 0.21 0 1 

10 
Droop 

PI 

-54 

22.15 

0.19 

0.68 

15.7 

0.66 

0.53 

0.09 

Proposed -34.6 0.23 0.02 1 
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