
GPU-accelerated nonlinear programming

Mihai Anitescu 1 François Pacaud 2 Sungho Shin 1

1MCS, Argonne National Laboratory 2CAS, Mines Paris - PSL

Autonomous Systems Workshop, Golden 2024

.

Who are we?

• An international team looking at the future of nonlinear programming

• Development of a nonlinear optimization solver: MadNLP.jl
- Winner of the 2023 COIN-OR cup!

2 of 28

https://MadNLP.jl

.

MadNLP: a structure exploiting interior-point solver

MadNLP

• Written in pure Julia

• Filter line-search IPM (ala Ipopt)

• Flexible & Modular

✓ CUDA-compatible

✓ MPI-compatible

Open-source:
https://github.com/MadNLP/MadNLP.jl/

3 of 28

https://github.com/MadNLP/MadNLP.jl/

.

Why GPUs?

- End of Moore’s Law

- GPUs power AI and scientifc computing (fuid, climate, bioinformatics)

- The newest generation of supercomputers are using GPUs

4 of 28 Source of the fgure: NVIDIA

.

Outline

Nonlinear programming

GPU-accelerated automatic-diferentiation

GPU-accelerated KKT linear solvers

5 of 28

.

Nonlinear programming: a reminder

n variables, m inequality constraints, p equality constraints

Continuous nonlinear problems
Equality cons.Objective  g(x) = 0

min f (x) subject to
x∈Rn  h(x) ≤ 0

The functions f , g , h are smooth, possibly nonconvex

• Useful framework to solve practical engineering problems

• Usually, we are interested only at fnding a local optimum

• Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

Inequality cons.

6 of 28 J. Nocedal, SJ. Wright. Numerical optimization.

.

Nonlinear programming: a reminder

n variables, m inequality constraints, p equality constraints

Continuous nonlinear problems
Equality cons.Objective  g(x) = 0

min f (x) subject to
x∈Rn ,s∈Rm h(x) + s = 0 , s ≥ 0

The functions f , g , h are smooth, possibly nonconvex

• Useful framework to solve practical engineering problems

• Usually, we are interested only at fnding a local optimum

• Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

Slack

6 of 28 J. Nocedal, SJ. Wright. Numerical optimization.

Interior-point method
Rewrite the (nonsmooth) KKT system as a smooth nonlinear system

∇f (x) + ∇g(x)⊤ y + ∇h(x)⊤ z
Dual variables

Fµ(x , s; y , z, ν) :=




= 0

z − ν

g(x)
h(x) + s

Sν − µe

Interior-point method

.

Complementarity cons., S = diag(s)

Solve Fµ(x , s; y , z, ν) = 0 using Newton method while driving µ → 0.

Augmented KKT system

At iteration k, solve the Newton step (∇Fµ)dk = −Fk  

W 0 ∇g⊤ ∇h⊤

0 Σs 0 I
∇g 0 0 0
∇h I 0 0

 

∇Fµ  
r1dx ds = −r2dy r3

dz r4

Figure: ∇Fµ with W = ∇2 L(·), Σs = S−1diag(ν)xx 7 of 28

� �� � � �

.

Condensed KKT system

Condensed KKT system

The augmented KKT system is equivalent to

K ∇g⊤ dx r1 + (∇h)⊤(Σs r4 + r2)= −
∇g 0 dy r3

with the condensed matrix K = W + ∇h⊤ Σs ∇h.
We recover (ds , dz) as

ds s (r3 + dy) , dz = Σs (∇h dx − r4) − r2 .= −Σ−1

• Additional fll-in compared to augmented KKT
system...

• Useful when the number of inequality constraints
m is large

8 of 28

.

Identifying the computational bottlenecks

How to solve the Newton step?

(∇Fµ)dk = −Fk

Two computational bottlenecks:
1. Evaluate derivatives and assemble KKT matrix ∇Fµ

2. Solve KKT system ∇Fµdk = −Fk

9 of 28

.

Outline

Nonlinear programming

GPU-accelerated automatic-diferentiation

GPU-accelerated KKT linear solvers

10 of 28

.

Evaluating derivatives on the GPU

Figure: Expression tree for exp(x2 + y2) (credit: JuMP.jl)

Derivatives: Evaluate ∇Fµ requires Jacobian and Hessian
- Rely on automatic diferentiation (AD)
- Usually we formulate the nonlinear program inside a modeler,

computing automatically the derivatives using the expression tree
- Software: AMPL, GAMS, Pyomo, JuMP (all designed for CPU)

Challenge: evaluating sparse derivatives on the GPU

• GPU-accelerated AD frameworks already exist (Torch, Tensorfow, jax)

• But none of them have full support for sparse and second-order

A. Griewank, A. Walther. Evaluating derivatives: principles and techniques of algorithmic diferentiation. SIAM, 2008. 11 of 28 I. Dunning, J. Huchette, M. Lubin. "JuMP: A modeling language for mathematical optimization." SIAM review 59, no. 2 (2017).

ds, arXiv:2307.16830.

ExaModels.jl: a prototype for sparse automatic diferentiation on GPU
• Large-scale optimization problems almost always have repetitive

patterns ⎥⎥
min f (l)(x ; pi

(l)) (SIMD abstraction)
x♭≤x≤x♯

l∈[L] i∈[Il] ⎥ ⎥
subject to g (m)(x ; qj) + h(n)(x ; sk

(n)) = 0, ∀m ∈ [M]
j∈[Jm]

n∈[Nm] k∈[Kn]

• Repeated patterns are made available by always specifying the models as
iterable objects

constraint(c, 3 * x[i+1]ˆ3 + 2 * sin(x[i+2]) for i 1:N-2)

• For each repeatitive pattern, the derivative evaluation kernel is
constructed & compiled, and executed in parallel over multiple data

Observation

� �

=

.

ExaModels.jl is efective at evaluating the derivatives of
practical nonlinear problems (e.g. optimal power fow)

12 of 28 S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power fow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point metho

https://ExaModels.jl
https://ExaModels.jl

.

Outline

Nonlinear programming

GPU-accelerated automatic-diferentiation

GPU-accelerated KKT linear solvers

13 of 28

.

Solving the KKT system on the GPU

= ×

Figure: Matrix factorization using a direct solver

Linear solve: Solve the KKT system ∇Fµdk = −Fk

- Usually require factorizing ∇Fµ (convex: Cholesky, nonconvex: LBL)

- KKT system is highly ill-conditioned → numerical pivoting

- Software: HSL, Pardiso

Challenge: solving the sparse linear system on the GPU

• Ill-conditioning of the KKT system: iterative solvers are often not practical
• Direct solver requires numerical pivoting for numerical stability,

an operation difcult to parallelize

14 of 28 B. Tassef, C. Cofrin, A. Wächter, C. Laird. "Exploring benefts of linear solver parallelism on modern nonlinear optimization applications.", 2019

.

Roadmap

Solution 1: Densifcation

• Reduce the KKT system down to a dense matrix

• Akin to a null-space method (also known as reduced Hessian)

• Works well if the number of degrees of freedom is small

Solution 2: Condensation

• Reduce the KKT system to a sparse positive defnite matrix

• Sparse Cholesky is stable without numerical pivoting
→ runs in parallel on the GPU (cuDSS)

• More versatile approach

15 of 28

.

Solution 1: Densifcation

• Split the decision variables into independent (=control)
and dependent variables (=states)

• Reduce the KKT system to a dense matrix by eliminating the state
variables

Problem with a physical structure

• u: control (=degrees of freedom)

• x : state

min
x,u

f (x , u) s.t.

  

g(x , u) = 0

h(x , u) ≤ 0

Physical cons.

Operational cons.

16 of 28 L. Biegler, J. Nocedal, C. Schmid. "A reduced Hessian method for large-scale constrained optimization." SIAM Journal on Optimization 5, no. 2 (1995)

� �

� � � � � �

.

Null-space strategy
We can exploit the structure in the condensed KKT
system (=split x from u)   # #G⊤Kuu Kux du r1 Kxu Kxx G

u

x
⊤ dx = − r2

Gu Gx 0 dy r3

Reduced KKT system

If the Jacobian Gx is invertible, then
the condensed KKT system is equivalent to

G−⊤K̂uu du = −r1 + Gu
⊤

x r2 + Kux Gx
−1r3

The reduced matrix K̂uu ∈ Rnu ×nu is dense and satisfes

ˆ I ⊤ Kuu Kux IKuu = −G−1 −G−1
x Gu Kxu Kxx x Gu

→ the reduction runs efciently in parallel on the GPU

17 of 28 F. Pacaud, S. Shin, M. Schanen, DA. Maldonado, M. Anitescu. "Accelerating condensed interior-point methods on SIMD/GPU architectures." JOTA (2023)

.

Application to the optimal power fow

The problem has a graph structure we can exploit:
• u: power generations

• x : voltage magnitudes and angles

Optimal power fow

min
x,u

f (x , u) s.t.

  

g(x , u) = 0

h(x , u) ≤ 0

Power fow balance

Line fow constraints

Structure is explicit!

18 of 28

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Ratio of degrees of freedom

100

101

S
pe

ed
-u

p
ra

tio

LinRed is better

Full-space is better
1354

2000

2869
9241

10000

13659

1048019402

9591

.

Numerical results on large-scale OPF instances

Observations

• The performance depends on the number of controls in the problem
(the less, the better)

• Results on the AC OPF problem: the reduction gives better results than
SOTA if ratio < 7%

19 of 28 F. Pacaud, S. Shin, M. Schanen, DA. Maldonado, M. Anitescu. "Accelerating condensed interior-point methods on SIMD/GPU architectures." JOTA (2023)

.

Security-constrained optimal power fow
• N scenarios, with one coupling u (power generations)
• One recourse per scenario: states x1, · · · , xN

Stochastic optimal power fow

min
xi ,u

⎥

i

fi (xi , u)

s.t. gi (xi , u) = 0 ∀i = 1, · · · , N

hi (xi , u) ≤ 0 ∀i = 1, · · · , N

Power fow balance

Line fow constraints

Fact
The condensed KKT system has a block-arrowhead
structure

K = W + ∇h⊤ Σs ∇h =

 

Kx1x1 Kx1u

. . .
. . .

KxN xN

Kux1 . . . Kuu

 

20 of 28

Running a nonlinear solver on multiple GPUs with CUDA-MPI

Solution

.

Nested reduction using hierarchical Schur complement on multiple GPUs

Apply directly to the solution of two-stage nonlinear programs

8 16 32 64 128 256 512
N scenarios

10 2

10 1

100

101

Ti
m

e
[s

]

Linear solver time against N
ma27
ma57

Figure: The 2000s: frontal solve using sparse LDL factorization (HSL)

21 of 28 F. Pacaud, M. Schanen, S. Shin, DA. Maldonado, M. Anitescu. "Parallel Interior-Point Solver for Block-Structured Nonlinear Programs on SIMD/GPU Architectures."

Running a nonlinear solver on multiple GPUs with CUDA-MPI

Solution

.

Nested reduction using hierarchical Schur complement on multiple GPUs

Apply directly to the solution of two-stage nonlinear programs

8 16 32 64 128 256 512
N scenarios

10 2

10 1

100

101

Ti
m

e
[s

]

Linear solver time against N
ma27
ma57
pardiso (1 cpus)
pardiso (2 cpus)
pardiso (4 cpus)
pardiso (8 cpus)

Figure: The 2010s: Schur with incomplete augmented factorization (Pardiso)

21 of 28 F. Pacaud, M. Schanen, S. Shin, DA. Maldonado, M. Anitescu. "Parallel Interior-Point Solver for Block-Structured Nonlinear Programs on SIMD/GPU Architectures."

Running a nonlinear solver on multiple GPUs with CUDA-MPI

Solution

.

Nested reduction using hierarchical Schur complement on multiple GPUs

Apply directly to the solution of two-stage nonlinear programs

8 16 32 64 128 256 512
N scenarios

10 2

10 1

100

101

Ti
m

e
[s

]

Linear solver time against N
ma27
ma57
pardiso (1 cpus)
pardiso (2 cpus)
pardiso (4 cpus)
pardiso (8 cpus)
reduct. (1 GPUs)
reduct. (2 GPUs)
reduct. (4 GPUs)
reduct. (8 GPUs)

Figure: The 2020s: Schur complement with multiple RHS on GPUs

21 of 28 F. Pacaud, M. Schanen, S. Shin, DA. Maldonado, M. Anitescu. "Parallel Interior-Point Solver for Block-Structured Nonlinear Programs on SIMD/GPU Architectures."

ds, arXiv:2307.16830.

� �� � � �

.

Solution 2: Condensation of the linear system

We look again at the condensed KKT system:

K ∇g⊤ dx w1= −
∇g 0 dy w2

with the condensed matrix K = W + ∇h⊤ Σs ∇h.

→ Two strategies to reduce it down to a positive defnite matrix:
1. LiftedKKT

2. HyKKT

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power fow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point metho22 of 28 S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methods and Software 38, no. 2 (2023)

ds, arXiv:2307.16830.

LiftedKKT

Idea: equality relaxation

�

.

For a τ > 0 small enough, solve the relaxed problem

|g(x)| ≤ τ
min f (x) subject to
x∈Rn h(x) ≤ 0

Reformulating the problem with slack variables:

min f (x) subject to hτ (x) + s = 0 , s ≥ 0
x∈Rn ,s∈Rm+p

with hτ (x) = (|g(x)| − τ, h(x))

Evaluating the descent direction using the condensed KKT system

The augmented KKT system is equivalent to

Kτ dx = −r1 + (∇hτ)⊤(Σs r4 + r2)

with the condensed matrix K = W + (∇hτ)⊤ Σs (∇hτ).

→ the condensed KKT system can be solved without numerical pivoting!
23 of 28 S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power fow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point metho

HyKKT

Idea: augmented Lagrangian reformulation

� �� � � �

.

For γ > 0, the condensed KKT system is equivalent to

Kγ ∇g⊤ dx w1 + γ∇g⊤w2= − ∇g 0 dy w2

with Kγ = K + γ∇g⊤∇g

For γ large-enough the matrix Kγ is positive defnite
We can solve the condensed KKT system using the normal equations:

(∇g)K −1(∇g)⊤dy = w2 − K −1(w1 + γ∇g⊤w2)γ γ

• Once Kγ factorized with Cholesky, HyKKT solves the normal equations
iteratively with a conjugate gradient (CG) algorithm

• For large γ, CG converges in few iterations

24 of 28 S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methods and Software 38, no. 2 (2023)

Figure: Performance profle
.

Results on the AC-OPF problem

Observations

• We use the newly released cuDSS solver (sparse Cholesky)

• Up to 10x speed-up compared to Ipopt

HSL MA27 LiftedKKT+cuDSS HyKKT+cuDSS
Case it init lin total it init lin total it init lin total
13659_pegase
19402_goc
20758_epigrids
78484_epigrids

63 0.45 7.21
69 0.63 31.71
51 0.63 14.27

102 2.57 179.29

10.14
36.92
18.21

207.79

75 0.83 1.05 2.96
73 1.42 2.28 5.38
53 1.34 1.05 3.57

101 5.94 5.62 18.03

62 0.84 0.93 2.47
69 1.44 1.93 4.31
51 1.35 1.55 3.51

104 6.29 9.01 18.90

Table: OPF benchmark, solved with a tolerance tol=1e-6. (A100 GPU)

25 of 28

.

Results on the COPS benchmark

Observation

• LiftedKKT and HyKKT remain competitive, but are not signifcantly
faster on the COPS benchmark

HSL MA57 LiftedKKT+cuDSS HyKKT+cuDSS
n m it init lin total it init lin total it init lin total

bearing_800
camshape_12800
elec_800
gasoil_12800
marine_12800
pinene_12800
robot_12800
rocket_51200
steering_51200

643k
13k
2k

333k
410k
640k
115k
205k
256k

3k
38k

0.8k
333k
410k
640k
77k

154k
205k

13 0.94 14.59
34 0.02 0.34

354 2.36 337.41
20 1.78 11.15
11 0.36 3.51
10 0.48 7.15
35 0.54 4.63
31 1.21 6.24
27 1.40 9.74

16.86
0.54

409.57
13.65
4.46
8.45
5.91
9.51

13.00

14 3.31 0.18 4.10
33 0.05 0.02 0.16

298 2.11 2.58 24.38
18 2.11 0.98 5.50

146 2.80 25.04 39.24
21 4.50 0.99 7.44
33 1.13 0.30 4.29
37 0.83 0.17 8.49
15 1.82 0.19 5.41

12 3.32 1.98 5.86
34 0.06 0.03 0.19

184 1.81 2.40 16.33
22 2.99 1.21 6.47
11 2.89 0.63 4.03
11 4.65 3.54 9.25
35 1.15 0.27 4.58
30 0.87 2.67 10.11
28 1.88 0.56 11.31

Table: COPS benchmark , solved with a tolerance tol=1e-6 (A100 GPU)
26 of 28

.

How expensive should be your GPU?

Benchmarking diferent GPUs

• A100 (80GB) HPC ($10,000)

• A30 (24GB) workstation ($5,000)

• A1000 (4GB) laptop

CPU A1000 A30 A100
0

2

4

6

8

Ti
m

e
(s

)

9241pegase

CPU A1000 A30 A100
0

10

20

30

40

50

60

70

Ti
m

e
(s

)

30000goc

CPU A1000 A30 A100
0

25

50

75

100

125

150

175

200

Ti
m

e
(s

)

78484epigrids

27 of 28

.

Perspective

Summary

Two practical methods to solve large-scale nonlinear programs on GPU:
• Condense & Densify

• Relax equality & condense

Take away

1. Large-scale optimization is practical on modern GPU hardware

2. On some problems, we observe a x10 speed-up compared to
state-of-the-art

3. Exciting new developments are coming!

28 of 28

	Nonlinear programming
	GPU-accelerated automatic-differentiation
	GPU-accelerated KKT linear solvers

