PROBABILISTIC FORECASTING VIA GENERATIVE AI

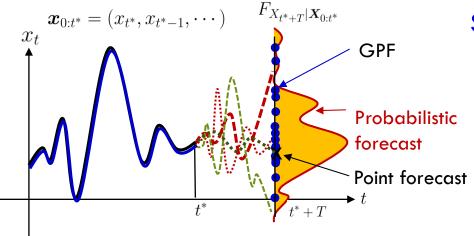
Lang Tong

Electrical and Computer Engineering Cornell University, Ithaca, NY

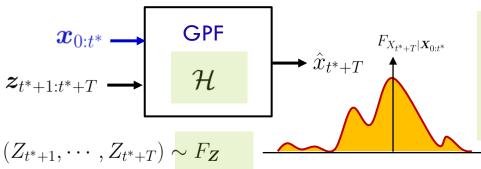
Joint work with Qing Zhao and Kyla Wang

Presented at 7th AES Workshop, Golden, CO, September 5, 2024

Generative Probabilistic Forecasting (GPF)



A generic GPF structure



State-of-art approaches

Parametric methods

Finite dimensional estimation and tracking

Non-parametric methods

Intractable. Infinite dimensional with few samples

Deep learning

A few, including using LMM and ChatGPT, none shown to solve the GPF problem.

The GPF Problem

Find mapping \mathcal{H} and sampling probability distribution F_{Z} such that $\hat{X}_{t^*+T} \sim F_{X_{t^*+T}|X_{0:t^*}|}$

Innovation Representation: Wiener-Kallianpur ('58) and Rosenblatt ('59)

Independent of the past!

Wiener-Kallianpur's innovation hypothesis

$$(\cdots, x_{-2}, x_{-1}, x_0, x_1, \cdots, x_2, \cdots)$$

Wiener-Kallianpur's strong innovation autoencoder

$$\nu_t = G(x_t, x_{t-1}, \cdots) \quad \hat{x}_t = H(\nu_t, \nu_{t-1}, \cdots) \stackrel{\text{a.s.}}{=} x_t$$

where $\nu_t \stackrel{\text{\tiny i.i.d.}}{\sim} U(0,1)$ and referred to as innovations.

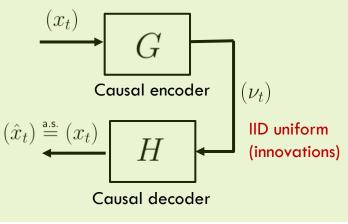
$$\begin{split} \nu_t &= G(\overbrace{x_t, x_{t-1}, \cdots}^{\mathcal{X}_t}) = \tilde{G}(x_t, \overbrace{\nu_{t-1}, \nu_{t-2}, \cdots}^{\mathcal{X}_{t-1}}) \\ & \underset{\parallel}{\overset{\parallel}{\underset{\text{formation}}}} \\ \text{rew information} \end{split}$$

Wiener

Kallianpur

Rosenblatt

Innovation autoencoder (IAE)



Rosenblatt's weak innovation autoencoder (WIAE): $(\hat{x}_t) \stackrel{\mathsf{D}}{=} (x_t)$

Computation of innovation autoencoder

 Gaussian model with linear minimum-mean-squarederror (MMSE) prediction (Kolmogorov, Wiener, Kalman)

$$\hat{x}_{t|t-1} := a_1 x_{t-1} + a_2 x_{t-2} + \cdots$$
$$\nu_t = x_t - \hat{x}_{t|t-1}.$$

AWGN model in continuous-time:

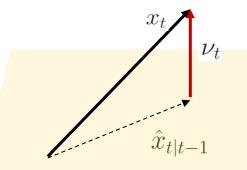
4

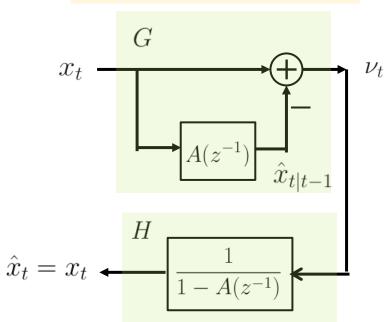
$$x(t) = s(t) + n(t)$$

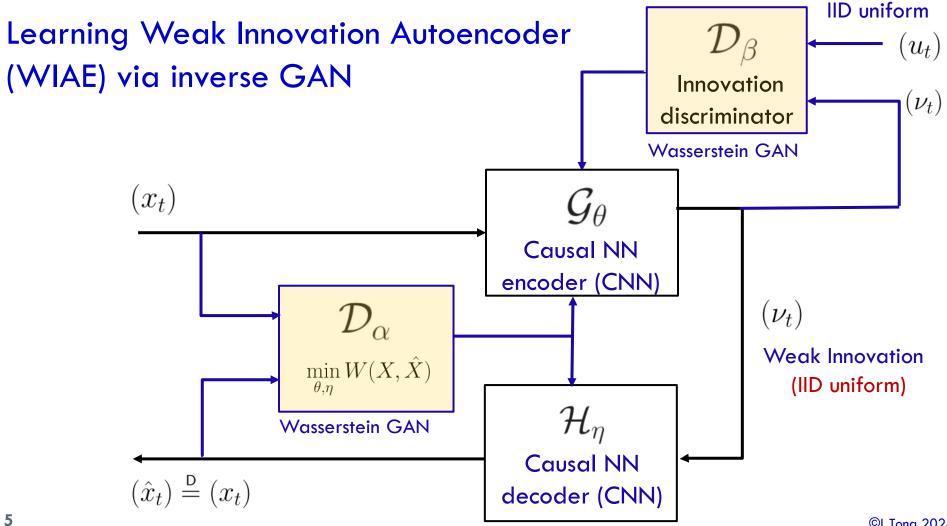
Non-Gaussian Gaussian

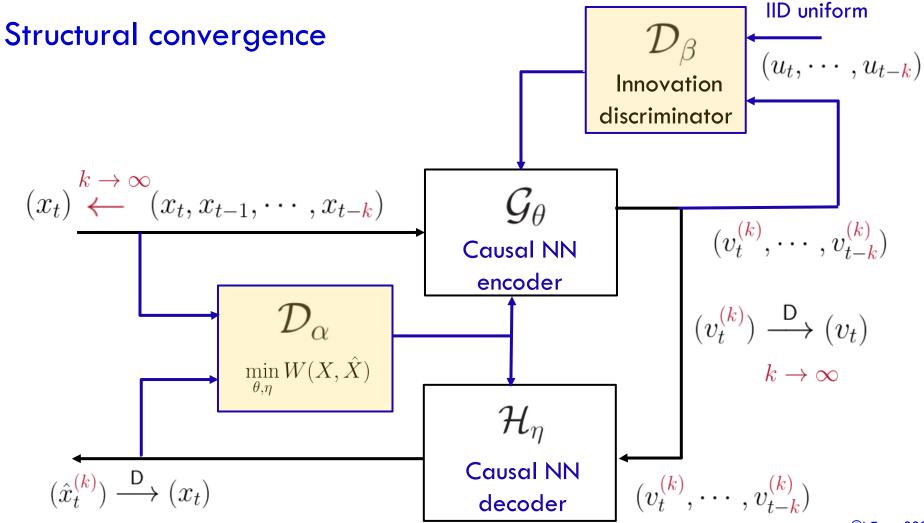
Nonlinear MSE prediction (Frost-Kailath)

 $u(t)=x(t)-\hat{x}(t)$ Causal (nonlinear) minimum-mean-squared-error prediction

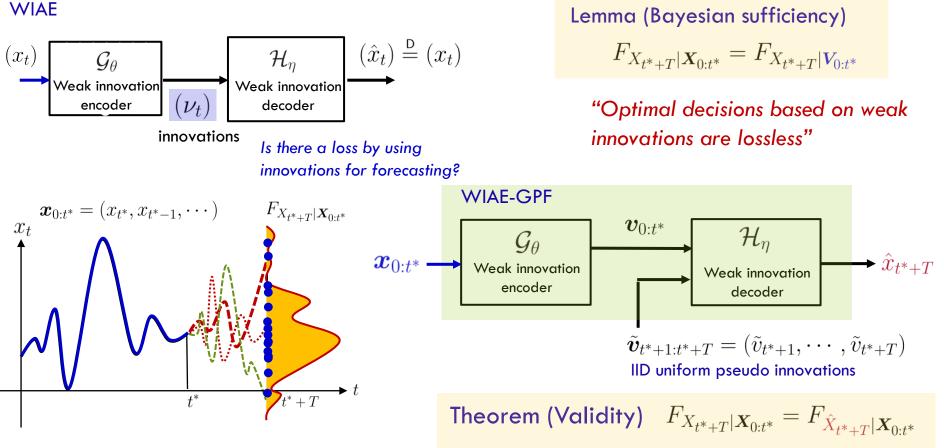








GPF with Weak Innovation Auto-Encoder (WIAE)



Baselines and performance metrics

Algorithm	Forecasting Type	Time Series Model	Forecastor Output	ML Models	
SNARX [4]	Probabilistic	Semiparametric AR	AR Model Parameters	Kernel Estimation	
WIAE-GPF	Probabilistic	Nonparametric	Generative	CNN + WIAE	
TLAE [17]	Probabilistic	Parametric	Generative	RNN + VAE	
DeepVAR [36]	Probabilistic	Parametric (AR Model)	Model Parameters	LSTM	
BWGVT [16]	Probabilistic	Nonparametric	Forecasted Quantiles	LLM + Quantile Regression	
Pyraformer [28]	Point	Nonparametric	Point Estimate	LLM	
Informer [27]	Point	Nonparametric	Point Estimate	LLM	

$$\text{NMSE} = \frac{\frac{1}{N} \sum_{t=1}^{N} (\boldsymbol{X}_{t} - \tilde{\boldsymbol{X}}_{t})^{2}}{\frac{1}{N} \sum_{t=1}^{N} \boldsymbol{X}_{t}^{2}},$$
$$\text{NMAE} = \frac{\frac{1}{N} \sum_{t=1}^{N} |\boldsymbol{X}_{t} - \tilde{\boldsymbol{X}}_{t}|}{\frac{1}{N} \sum_{t=1}^{N} |\boldsymbol{X}_{t}|},$$
$$\text{MASE} = \frac{\frac{1}{N} \sum_{t=1}^{N} |\boldsymbol{X}_{t} - \tilde{\boldsymbol{X}}_{t}|}{\frac{1}{N} \sum_{t=1}^{N} |\boldsymbol{X}_{t} - \tilde{\boldsymbol{X}}_{t}|}$$

Mean Absolute $N-T \rightharpoonup_{t=T+1} p_{T}$ Scaled Error

sMAPE = $\frac{1}{N} \sum_{t=1}^{N} \frac{|X_t - \tilde{X}_t|}{(|X_t| + |\tilde{X}_t|)/2}$. Absolute % error

Continuously ranked probability score:

$$CRPS = \int \tilde{\mathbb{E}} \left[\tilde{F}_{t+T|t}(\boldsymbol{x} | \boldsymbol{x}_{0:t}) - \mathbb{1}_{\{\boldsymbol{x}_{t+T} \leq \boldsymbol{x}\}} \right]^2 d\boldsymbol{x}$$
Coverage Probability Error (CPE) at $\beta\%$:

$$CPE(\beta\%) = CP(\beta\%) - \beta\%.$$

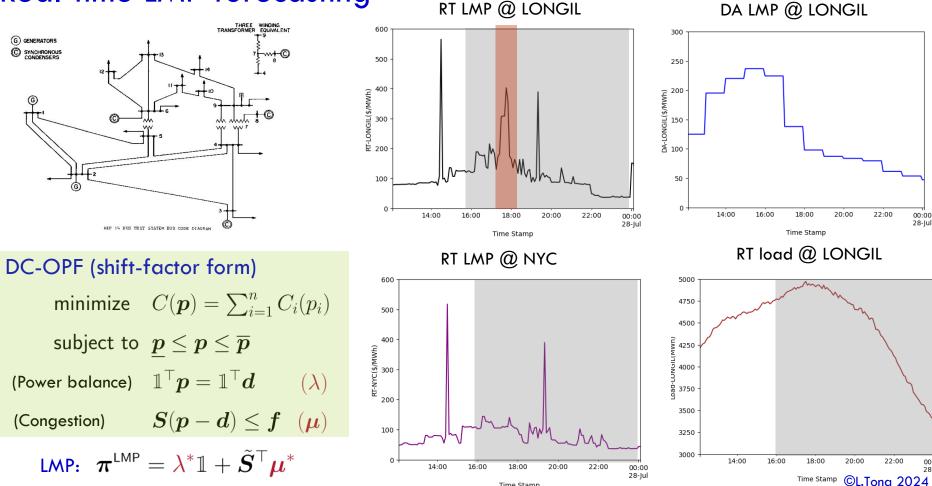
$$(1 - \beta)/2$$

$$\hat{L}_{t+T|t,\beta}$$
Normalized Coverage Width (NCW) at $\beta\%$:

$$1 \frac{N-T}{\hat{U}} = 1 - \hat{L}$$

$$\mathsf{NCW}(\beta\%) = \frac{1}{N} \sum_{t=1}^{N-T} \frac{\hat{U}_{t+T|t,\beta} - \hat{L}_{t+T|t,\beta}}{\hat{U}_{\beta} - \hat{U}_{\beta}}$$

Real-time LMP forecasting



Time Stamp

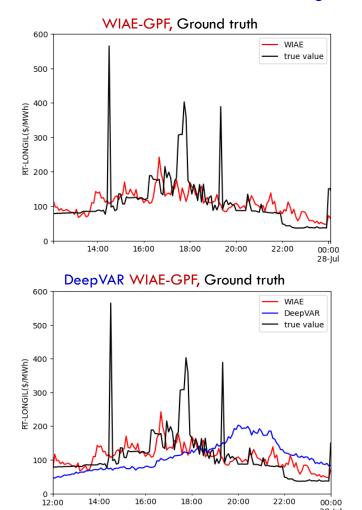
28

LMP forecasting at LONGIL of NYISO

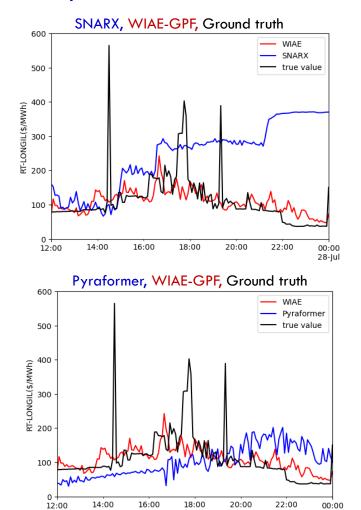
	Methods		NMSE	NMAE		
	Wiethous	LONGIL	LONGIL & NYC	LONGIL	LONGIL & NYC	
Kernel Estimation	SNARX	0.9852	0.5029	0.9733	0.7318	
CNN + WIAE	WIAE-GPF	0.0585	0.0487	0.2074	0.1186	
RNN + VAE	TLAE	0.2956	0.0232	0.4186	0.1366	
LSTM	DeepVAR	0.3919	0.4060	0.4088	0.4097	
LLM	BWGVT	0.2670	0.2528	0.3158	0.3280	
LLM	Pyraformer	0.3128	0.1382	0.3074	0.2556	
LLM	Informer	0.1912	0.1829	0.3147	0.2830	

Methods -	MASE			sMAPE	CRPS		
Methous -	LONGIL	LONGIL & NYC	LONGIL	LONGIL & NYC	LONGIL	LONGIL & NYC	
SNARX	1.0666	0.6294	1.4319	0.4162	18.2864	10.5286	
WIAE-GPF	0.1503	0.0737	0.0839	0.0316	4.0029	1.1519	
TLAE	0.2968	0.0917	0.2720	0.3190	6.1875	2.8449	
DeepVAR	0.2832	0.2841	1.3629	0.3703	23.1460	22.9434	
BWGVT	0.8890	0.2979	0.2817	0.3900	24.2595	24.3065	
Pyraformer	0.2334	0.1538	0.1059	0.3765	N/A	N/A	
Informer	0.4786	0.1802	0.3761	0.3827	N/A	N/A	
0		·	•	•	•	©L.Tong 202	

One-hour-ahead LMP forecasting with 5-hour history

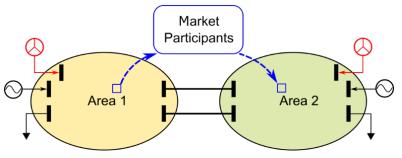


11



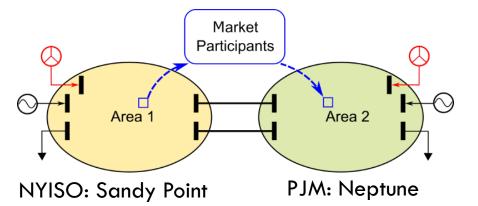
Interchange market with CTS

- Independent System Operators (ISOs) do not trade power directly with each other; market participants facilitate trades.
- Market participants submit (virtual)
 bids/offers at specific "proxy buses," buying
 Q at one proxy and selling Q at the other.



- ISOs clear these bids/offers (separately or jointly) and set the interchange quantity by coordinating cleared bids ahead of time.
- Market participants do not incur physical obligations to generate/consume.
- Cleared trades are financially binding; they are settled based on the real-time locational marginal price (LMP).
- A market participant is paid if it bets the price-spread direction correctly.
 Otherwise, it will have to pay to the operator.

NYISO-PJM Interchange



Timing: Market closing 75 minutes

before delivery

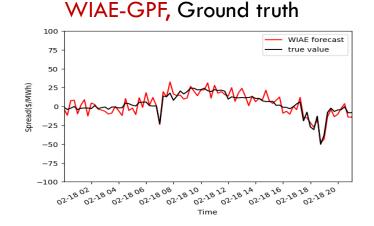
- Data: 15-minute LMP
- 75 min ahead forecasting with 5

hour past LMP and load

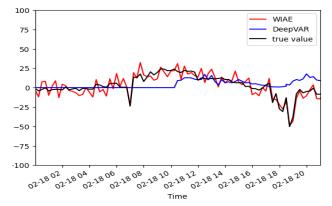
Probability of Correct Price Direction

	Methods	NMSE	NMAE	MASE	SMAPE	PCPD	CRPS
Kernel Estimation	SNARX	2.4531	1.3415	1.5762	0.4958	0.3282	120.0403
CNN + WIAE	WIAE-GPF	0.0098	0.2738	0.2418	0.4493	0.9394	4.0329
RNN + VAE	TLAE	0.9592	0.9785	0.9516	0.4785	0.6308	15.5195
LSTM	DeepVAR	8.9864	0.7224	0.8253	0.4806	0.6495	32.8296
LLM	BWGVT	0.9053	0.8525	0.6513	0.4674	0.7687	31.5660
LLM	Pyraformer	0.9478	1.2674	0.9796	0.4909	0.3262	N/A
LLM	Informer	0.8045	0.4185	0.4836	0.4580	0.4513	N/A
3							

75-min-ahead price spread forecasting @ NYISO-ISONE Interchange

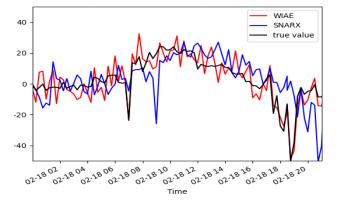


DeepVAR, WIAE-GPF, Ground truth

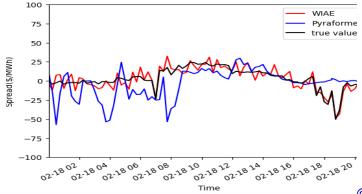


14

SNARX, WIAE-GPF, Ground truth

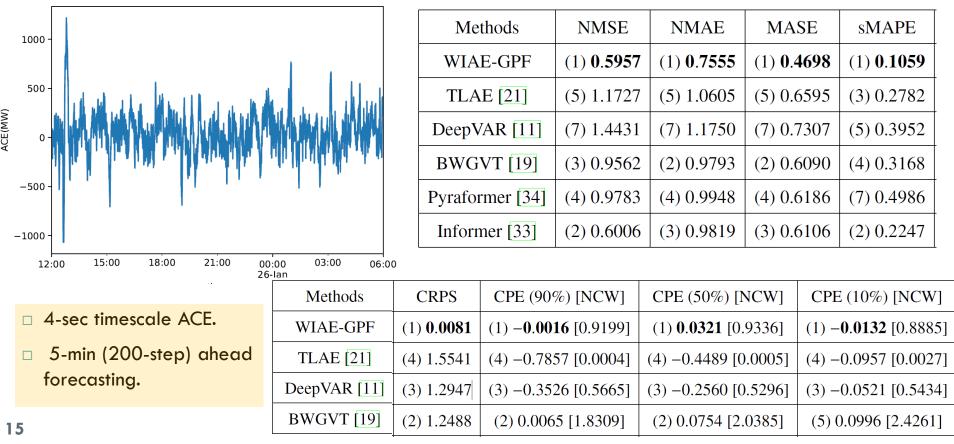


Pyraformer WIAE-GPF, Ground truth

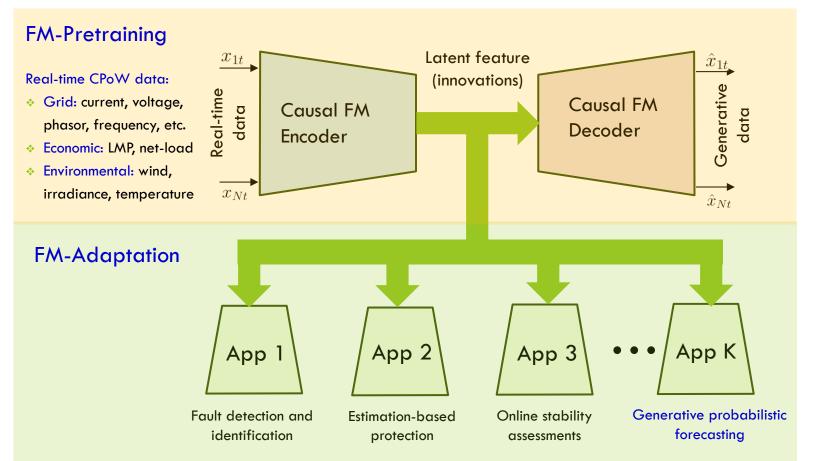


Generative Probabilistic Forecasting of Area Control Error (ACE)

PJM ACE during Jan 25-26, 2023



A Foundation Model approach to system and market operations



Conclusion

- Learning probability distribution is very difficult, especially if it is learning a future (conditional) distribution. Yet, GPF is possible.
- The Wiener-Kallianpur-Rosenblatt innovation autoencoder is a canonical architecture for GPF and a Foundation Model for realtime non-parametric decision-making and control.

References

17

[1] Xinyi Wang and Lang Tong, <u>Innovations Autoencoder and its Application in One-class Anomalous Sequence Detection</u>, Journal of Machine Learning Research, vol. 23, no. 49., pp. 1-27, 2022.
[2] X. Wang, L. Tong and Q. Zhao, <u>"Generative Probabilistic Time Series Forecasting and Applications in Grid Operations</u> 2024 58th Annual Conference on Information Sciences and Systems (CISS)Princeton, NJ, March, 2024.
[3] X. Wang, Q. Zhao, and L. Tong, <u>"Forecasting Electricity Market Signals with Generative AI</u>," arXiv:2403.05743. <u>©L.Tong 2024</u>